This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Lattice-Based Volumetric Global Illumination
November/December 2007 (vol. 13 no. 6)
pp. 1576-1583
We describe a novel volumetric global illumination framework based on the Face-Centered Cubic (FCC) lattice. An FCC lattice has important advantages over a Cartesian lattice. It has higher packing density in the frequency domain, which translates to better sampling efficiency. Furthermore, it has the maximal possible kissing number (equivalent to the number of nearest neighbors of each site), which provides optimal 3D angular discretization among all lattices. We employ a new two-pass (illumination and rendering) global illumination scheme on an FCC lattice. This scheme exploits the angular discretization to greatly simplify the computation in multiple scattering and to minimize illumination information storage. The GPU has been utilized to further accelerate the rendering stage. We demonstrate our new framework with participating media and volume rendering with multiple scattering, where both are significantly faster than traditional techniques with comparable quality.

[1] P. Blasi, B. L. Saëec, and C. Schlick, A rendering algorithm for discrete volume density objects. Computer Graphics Forum, 12 (3): 201–210, 1993.
[2] J. F. Blinn, Light reflection functions for simulation of clouds and dusty surfaces. SIGGRAPH, pages 21–29, 1982.
[3] E. Cerezo, F. Pérez, X. Pueyo, F. Seron, and F. Sillion, A survey on participating media rendering techniques. The Visual Computer, 21 (5): 303–328, June 2005.
[4] J. C. Chai, H. S. Lee, and S. V. Patankar, Ray effect and false scattering in the discrete ordinates method. Numerical Heat Transfer Part B, 24: 373–389, 1993.
[5] S. Chandrasekhar, Radiative Transfer. Dover Publications, 1960.
[6] J. H. Conway, N. J. A. Sloane, and E. Bannai, Sphere-packings, Lattices, and Groups. Springer-Verlag, New York, NY, USA, 1987.
[7] F. Dachille and A. Kaufman, Incremental triangle voxelization. Graphics Interface, pages 205–212, May 2000.
[8] D. E. Dudgeon and R. M. Mersereau , Multidimensional Digital Signal Processing. Prentice Hall Professional Technical Reference, 1990.
[9] D. S. Dummit and R. M. Foote, Abstract Algebra. John Wiley and Sons, second edition, 1999.
[10] A. Entezari, R. Dyer, and T. Moller, Linear and cubic box splines for the body centered cubic lattice. Proceedings of IEEE Visualization, pages 11–18, 2004.
[11] M. S. Floater, K. Hormann, and G. Kós., A general construction of barycentric coordinates over convex polygons. Advances in Computational Mathematics, 24 (1–4): 311–331, Jan. 2006.
[12] R. Geist, K. Rasche, J. Westall, and R. J. Schalkoff, Lattice-boltzmann lighting. Proceedings of the Eurographics Workshop on Rendering Techniques, pages 355–362, 2004.
[13] M. J. Harris and A. Lastra, Real-time cloud rendering. Computer Graphics Forum, 20 (3): 76–84, 2001.
[14] K. Hegeman, M. Ashikhmin, and S. Premoze, A lighting model for general participating media. Proceedings of Symposium on Interactive 3D Graphics and Games, pages 117–124, 2005.
[15] H. W. Jensen, Global illumination using photon maps. Proceedings of Eurographics Workshop on Rendering Techniques, pages 21–30, 1996.
[16] H. W. Jensen and P. H. Christensen, Efficient simulation of light transport in scenes with participating media using photon maps. SIGGRAPH, pages 311–320, 1998.
[17] J. T. Kajiya and B. P. V. Herzen, Ray tracing volume densities. SIGGRAPH, pages 165–174, 1984.
[18] J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson, A model for volume lighting and modeling. IEEE Transactions on Visualization and Computer Graphics, 9 (2): 150–162, April–June 2003.
[19] J. Kruger and R. Westermann, Acceleration techniques for GPU-based volume rendering. Proceedings of IEEE Visualization, pages 287–292, 2003.
[20] N. L. Max, Efficient light propagation for multiple anisotropic volume scattering. Eurographics Workshop on Rendering, pages 87–104, 1994.
[21] N. L. Max, Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 1 (2): 99–108, 1995.
[22] N. Neophytou and K. Mueller, Space-time points: 4D splatting on efficient grids. Proceedings of Symposium on Volume Visualization and Graphics, pages 97–106, 2002.
[23] M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.
[24] W. Qiao, D. S. Ebert, A. Entezari, M. Korkusinski, and G. Klimeck, VolQD: Direct volume rendering of multi-million atom quantum dot simulations. Proceedings of IEEE Visualization, pages 319–326, 2005.
[25] H. Qu and A. Kaufman, O-buffer: A framework for sample-based graphics. IEEE Transactions on Visualization and Computer Graphics, 10 (4): 410–421, July–August 2004.
[26] K. Riley, D. S. Ebert, M. Kraus, J. Tessendorf, and C. D. Hansen, Efficient rendering of atmospheric phenomena. Proceedings of Eurographics Symposium on Rendering, pages 374–386, 2004.
[27] H. E. Rushmeier and K. E. Torrance, The zonal method for calculating light intensities in the presence of a participating medium. SIGGRAPH, pages 293–302, 1987.
[28] L. M. Sobierajski and A. E. Kaufman, Volumetric ray tracing. Symposium on Volume visualization, pages 11–18, 1994.
[29] T. Theuβl, T. Möller, and M. E. Gröller, Optimal regular volume sampling. Proceedings of IEEE Visualization, pages 91–98, 2001.

Index Terms:
Volume visualization, volume rendering, participating media, lattice, FCC lattice, sampling, multiple scattering, GPU.
Citation:
Feng Qiu, Fang Xu, Zhe Fan, Neophytou Neophytos, Arie Kaufman, Klaus Mueller, "Lattice-Based Volumetric Global Illumination," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1576-1583, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70573
Usage of this product signifies your acceptance of the Terms of Use.