
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Andrei C. Jalba, Jos B.T.M. Roerdink, "Efficient Surface Reconstruction using Generalized Coulomb Potentials," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 15121519, November/December, 2007.  
BibTex  x  
@article{ 10.1109/TVCG.2007.70553, author = {Andrei C. Jalba and Jos B.T.M. Roerdink}, title = {Efficient Surface Reconstruction using Generalized Coulomb Potentials}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {13}, number = {6}, issn = {10772626}, year = {2007}, pages = {15121519}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70553}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Efficient Surface Reconstruction using Generalized Coulomb Potentials IS  6 SN  10772626 SP1512 EP1519 EPD  15121519 A1  Andrei C. Jalba, A1  Jos B.T.M. Roerdink, PY  2007 KW  Surface reconstruction KW  Implicit surfaces KW  Octrees KW  Generalized Coulomb potentials KW  Polygonization VL  13 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] N. Ahuja and J.H. Chuang, Shape representation using a generalized potential field model. IEEE Trans. Pattern Anal. Machine Intell., 19 (2): 169–176, 1997.
[2] R. Allègre, R. Chaine, and S. Akkouche, Convectiondriven dynamic surface reconstruction. In Proc. Shape Modeling International, pages 33–42, 2005.
[3] N. Amenta, M. Bern, and D. Eppstein, The crust and the βskeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing, 60 (2): 125–135, 1998.
[4] N. Amenta, S. Choi, and R. Kolluri, The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications, 19 (2–3): 127–153, 2001.
[5] C. L. Bajaj, F. Bernardini, and G. Xu, Automatic reconstruction of surfaces and scalar fields from 3D scans. Computer Graphics, 29: 109–118, 1995.
[6] J. E. Barnes and P. Hut, A hierarchical O(N Log N) force calculation algorithm. Nature, 324 (4): 446–449, 1986.
[7] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, The ballpivoting algorithm for surface reconstruction. IEEE Trans. on Visualization and Comp. Graphics, 5 (4): 349–359, 1999.
[8] J. D. Boissonnat and F. Cazals, Smooth surface reconstruction via natural neighbour interpolation of distance functions. In Proc. 16th ACM Symp. on Comput. Geom., pages 223–232, 2000.
[9] J. Carr, R. Beatson, B. McCallum, W. Fright, T. McLennan, and T. Mitchell, Smooth surface reconstruction from noisy range data. In Proc. Graphite 2003, pages 119–126, 2003.
[10] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans, Reconstruction and representation of 3D objects with radial basis functions. In Proc. SIGGRAPH'01, pages 67–76, 2001.
[11] R. Chaine, A geometric convection approach of 3D reconstruction. In Proc. Eurographics Symposium on Geometry Processing, pages 218–229, 2003.
[12] B. Curless and M. Levoy, A volumetric method for building complex models from range images. In Proc. SIGGRAPH'96, pages 303–312, 1996.
[13] H. Q. Dinh, G. Turk, and G. Slabaugh, Reconstructing surfaces by volumetric regularization using radial basis functions. IEEE Trans. Pattern Anal. Machine Intell., pages 1358–1371, 2002.
[14] N. A. Dodgson, Quadratic interpolation for image resampling. IEEE Trans. Image Processing, 6 (9): 1322–1326, 1997.
[15] H. Edelsbrunner and E. P. Mücke, Threedimensional alpha shapes. ACM Trans. Graphics, 13 (1): 43–72, 1994.
[16] J. Giesen and M. John, Surface reconstruction based on a dynamical system. Computer Graphics Forum, 21 (3): 363–371, 2002.
[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface reconstruction from unorganized points. In Proc. SIGGRAPH'92, pages 71–78, 1992.
[18] A. C. Jalba and J. B. T. M. Roerdink, Surface reconstruction from noisy data using regularized membrane potentials. In Eurographics/IEEE VGTC Symposium on Visualization, pages 83–90, 2006.
[19] M. Kazhdan, Reconstruction of solid models from oriented point sets. In Eurographics Symposium on Geometry Processing, pages 73–82, 2005.
[20] M. Kazhdan, M. Bolitho, and H. Hoppe, Poisson surface reconstruction. In Eurographics Symposium on Geometry Processing, pages 61–70, 2006.
[21] N. Kojekine, V. Savchenko, and I. Hagiwara, Surface reconstruction based on compactly supported radial basis functions. In Geometric modeling: techniques, applications, systems and tools, pages 218–231. Kluwer Academic Publishers, 2004.
[22] R. Kolluri, J. R. Shewchuk, and J. F. O'Brien, Spectral surface reconstruction from noisy point clouds. In Symposium on Geometry Processing, pages 11–21. ACM Press, July 2004.
[23] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian, Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In Shape Modeling International, pages 89–98, 2001.
[24] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel, Multilevel partition of unity implicits. In Proc. SIGGRAPH'03, pages 463–470, 2003.
[25] Y. Ohtake, A. Belyaev, and H. Seidel, Multiscale approach to 3D scattered data interpolation with compactly supported basis functions. In Proc. of Shape Modeling International, pages 153–164, 2003.
[26] S. Oshe and J. A. Sethian, Fronts propagating with curvaturedependent speed: Algorithms based on HamiltonJacobi formulations. Journal of Computational Physics, 79: 12–49, 1988.
[27] S. Plantinga and G. Vegter, Isotopic meshing of implicit surfaces. Vis. Comput., 23 (1): 45–58, 2006.
[28] C. Scheidegger, S. Fleishman, and C. Silva, Triangulating pointset surfaces with bounded error. In Proc. Eurographics Symposium on Geometry Processing, pages 63–72, 2005.
[29] C. K. Tang and G. Medioni, Inference of integrated surface, curve, and junction descriptions from sparse 3D data. IEEE Trans. Pattern Anal. Machine Intell., 20: 1206–1223, 1998.
[30] G. Turk and J. F. O'Brien, Modelling with implicit surfaces that interpolate. ACM Trans. Graph., 21 (4): 855–873, 2002.
[31] H. Zhao, S. Osher, and R. Fedkiw, Fast surface reconstruction using the level set method. In Proceedings of the IEEE Workshop on Variational and Level Set Methods in Computer Vision, pages 194–202, 2001.