This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Topological Visualization of Brain Diffusion MRI Data
November/December 2007 (vol. 13 no. 6)
pp. 1496-1503
Topological methods give concise and expressive visual representations of flow fields. The present work suggests a comparable method for the visualization of human brain diffusion MRI data. We explore existing techniques for the topological analysis of generic tensor fields, but find them inappropriate for diffusion MRI data. Thus, we propose a novel approach that considers the asymptotic behavior of a probabilistic fiber tracking method and define analogs of the basic concepts of flow topology, like critical points, basins, and faces, with interpretations in terms of brain anatomy. The resulting features are fuzzy, reflecting the uncertainty inherent in any connectivity estimate from diffusion imaging. We describe an algorithm to extract the new type of features, demonstrate its robustness under noise, and present results for two regions in a diffusion MRI dataset to illustrate that the method allows a meaningful visual analysis of probabilistic fiber tracking results.

[1] A. Anwander, M. Tittgemeyer, D. von Cramon, A. Friederici, and T. Knöosche, Connectivity-based parcellation of broca's area. Cerebral Cortex, 17 (4) : 816–825, 2007.
[2] P. J. Basser, J. Mattiello, and D. L. Bihan, Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance, B (103) : 247–254, 1994.
[3] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44 : 625–632, 2000.
[4] P. J. Basser and C. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, B (111) : 209–219, 1996.
[5] T. Behrens, H. Johansen-Berg, S. Jbabdi, M. Rushworth, and M. Woolrich, Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 34 : 144–155, 2007.
[6] T. Behrens, M. Woolrich, M. Jenkinson, H. Johansen-Berg, R. Nunes, S. Clare, P. Matthews, J. Brady, and S. Smith, Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50 : 1077–1088, 2003.
[7] J. Blaas, C. P. Botha, B. Peters, F. M. Vos, and F. H. Post, Fast and reproducible fiber bundle selection in DTI visualization. In C. Silva, E. Gröller, and H. Rushmeier, editors, Proceedings of IEEE Visualization 2005, pages 59–64, October 2005.
[8] T. Brox and J. Weickert, Level set segmentation with multiple regions. IEEE Transactions on Image Processing, 15 (10) : 3213–3218, October 2006.
[9] A. Brun, H. Knutsson, H. J. Park, M. E. Shenton, and C.-F. Westin, Clustering fiber tracts using normalized cuts. In C. Barillot, D. Haynor, and P. Hellier, editors, Medical Image Computing and Computer-Assisted Intervention (MICCAI'04), volume 3216 of Lecture Notes in Computer Science, pages 368–375. Springer, 2004.
[10] T. Delmarcelle and L. Hesselink, The topology of symmetric, secondorder tensor fields. In R. Bergeron and A. Kaufman, editors, Proceedings of IEEE Visualization 1994, pages 140–147, 1994.
[11] F. Enders, N. Sauber, D. Merhof, P. Hastreiter, C. Nimsky, and M. Stamminger, Visualization of white matter tracts with wrapped streamlines. In C. Silva, E. Gröller, and H. Rushmeier, editors, Proceedings of IEEE Visualization 2005, pages 51–58, 2005.
[12] A. D. Friederici, J. Bahlmann, S. Heim, R. I. Schubotz, and A. Anwander, The brain differentiates human and non-human grammars: Functional localization and structural connectivity Proceedings of the National Academy of Sciences of the United States of America (PNAS), 103 (7) : 2458–2463, February 2006.
[13] H. Gudbjartsson and S. Patz, The rician distribution of noisy MRI data. Magnetic Resonance in Medicine, 36 (2) : 910–914, 1995.
[14] J. Helman and L. Hesselink, Representation and display of vector field topology in fluid flow data sets. Computer, 22 (8) : 27–36, 1989.
[15] L. Hesselink, Y. Levy, and Y. Lavin, The topology of symmetric, secondorder 3D tensor fields. IEEE Transactions on Visualization and Computer Graphics, 3 (1) : 1–11, 1997.
[16] U. Höhle and E. P. Klement, editors. Non-classical logics and their applications to fuzzy subsets, volume 32 of Theory and decision library. B : mathematical and statistical methods. Kluwer, 1995.
[17] H. Johansen-Berg, T. Behrens, M. Robson, I. Drobnjak, M. Rushworth, J. Brady, S. Smith, D. Higham, and P. Matthews, Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101 (36) : 13335–13340, 2004.
[18] L. Jonasson, X. Bresson, P. Hagmann, O. Cuisenaire, R. Meuli, and J.-P. Thiran, White matter fiber tract segmentation in DT-MRI using geometric flows. Medical Image Analysis, 9 : 223–236, 2005.
[19] G. Kindlmann, X. Tricoche, and C.-F. Westin, Anisotropy creases delineate white matter structure in diffusion tensor MRI. In R. Larsen, M. Nielsen, and J. Sporring, editors, Medical Image Computing and Computer-Assisted Intervention (MICCAI'06), volume 4190 of Lecture Notes in Computer Science, pages 126–133, Copenhagen, Denmark, October 2006. Springer.
[20] M. A. Koch, D. G. Norris, and M. Hund-Georgiadis, An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage, 16 : 241–250, 2002.
[21] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology, 161 (2) : 401–407, 1986.
[22] S. Mori and P. C. van Zijl, Fiber tracking: principles and strategies - a technical review. NMR in Biomedicine, 15 : 468–480, 2002.
[23] S. Pajevic, A. Aldroubi, and P. J. Basser, A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance, 154 : 85–100, 2002.
[24] T. Salzbrunn and G. Scheuermann, Streamline predicates. IEEE Transactions on Visualization and Computer Graphics, 12 (6) : 1601–1612, 2006.
[25] G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann, Visualizing local vector field topology. Journal of Electronic Imaging, 9 (4) : 356–367, October 2000.
[26] G. Scheuermann and X. Tricoche, Topological methods in flow visualization. In C. Johnson and C. Hansen, editors, The Visualization Handbook, pages 341–356. Academic Press, 2004.
[27] Scientific Computing and Imaging Institute (SCI). BioTensor: A scirun power app for processing and visualizing diffusion tensor images, 2006.
[28] E. Stejskal and J. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics, 42 : 288–292, 1965.
[29] D. Weinstein, G. Kindlmann, and E. Lundberg, Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In Proceedings of the Conference on Visualization '99, pages 249–253, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
[30] X. Zheng, B. Parlett, and A. Pang, Topological lines in 3D tensor fields and discriminant hessian factorization. IEEE Transactions on Visualization and Computer Graphics, 11 (4) : 395–407, July 2005.
[31] X. Zheng, B. Parlett, and A. Pang, Topological structures of 3D tensor fields In C. Silva, E. Gröller, and H. Rushmeier, editors, Proc. IEEE Visualization 2005, pages 551–558, 2005.
[32] X. Zheng, X. Tricoche, and A. Pang, Degenerate 3D tensors. In J. Weickert and H. Hagen, editors, Visualization and Processing of Tensor Fields, pages 241–256. Springer, 2006.

Index Terms:
Diffusion tensor, probabilistic fiber tracking, tensor topology, uncertainty visualization.
Citation:
Thomas Schultz, Holger Theisel, Hans-Peter Seidel, "Topological Visualization of Brain Diffusion MRI Data," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1496-1503, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70602
Usage of this product signifies your acceptance of the Terms of Use.