This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Multifield Visualization Using Local Statistical Complexity
November/December 2007 (vol. 13 no. 6)
pp. 1384-1391
Modern unsteady (multi-)field visualizations require an effective reduction of the data to be displayed. From a huge amount of information the most informative parts have to be extracted. Instead of the fuzzy application dependent notion of feature, a new approach based on information theoretic concepts is introduced in this paper to detect important regions. This is accomplished by extending the concept of local statistical complexity from finite state cellular automata to discretized (multi-)fields. Thus, informative parts of the data can be highlighted in an application-independent, purely mathematical sense. The new measure can be applied to unsteady multifields on regular grids in any application domain. The ability to detect and visualize important parts is demonstrated using diffusion, flow, and weather simulations.

[1] O. Andreassen, Visualization of vector fields using seed LIC and volume rendering. IEEE Transactions on Visualization and Computer Graphics, 10 (6): 673–682, 2004. Member-Anders Helgeland.
[2] R. Badii and A. Politi, Complexity: Hierarchical Structures and Scaling in Physics. Cambridge University Press, Cambridge, 1997.
[3] A. Bair, D. H. House, and C. Ware, Texturing of layered surfaces for optimal viewing. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 1125–1132, 2006.
[4] P. Ball, The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press, 2001.
[5] W. Bialek, I. Nemenman, and N. Tishby, Predictability, complexity, and learning. Neural Computation, 13: 2409–2463, 2001.
[6] P. Billant, J. Chomaz, and P. Huerre, Experimental study of vortex breakdown in swirling jets. JFM, 376: 183–219, 1999.
[7] J. P. Crutchfield and K. Young, Inferring statistical complexity. Phys. Rev. Lett., 63 (2): 105–108, July 1989.
[8] G. W. E. Hairer, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, 2nd ed. Springer Verlag, Berlin, 1996.
[9] J. Ebling and G. Scheuermann, Clifford convolution and pattern matching on vector fields. In Proceedings of the 14th IEEE Visualization 2003, pages 193–200, Washington, DC, USA, 2003. IEEE Computer Society.
[10] ftp://ftp.lrzmuenchen.de/pub/science/fluiddynamics/cfd/NaSt2D.
[11] C. Garth, G.-S. Li, X. Tricoche, C. D. Hansen, and H. Hagen, Visualization of coherent structures in transient flow. to appear in Proceedings of TopoInVis 2007: Topology-Based Methods in Visualization, Leipzig, Germany, March4–6, 2007.
[12] P. Grassberger, Toward a quantitative theory of self-generated complexity. International Journal of Theoretical Physics, 25 (9): 907–938, Sept. 1986.
[13] J. M. Greenberg and S. P. Hastings, Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics, 34: 515–523, 1978.
[14] M. Griebel, T. Dornseifer, and T. Neunhoeffer, Numerical simulation in fluid dynamics: a practical introduction. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.
[15] H. Gutowitz, A massively parallel cryptosystem based on cellular automata. In B. Schneier, editor, Applied Cryptography. K. Reidel, 1993.
[16] H. Hartman and P. Tamayo, Reversible CA and chemical turbulence. Physica D, 45: 293–306, 1990.
[17] E. Heiberg, T. Ebbers, L. Wigstrom, and M. Karlsson, Three-dimensional flow characterization using vector pattern matching. IEEE Transactions on Visualization and Computer Graphics, 9 (3): 313–319, 2003.
[18] P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Statistical Theory: Ch. 3 - Testing Hypotheses. New York: Houghton Mifflin, 1971.
[19] T. Hogg and B. Huberman, Order, complexity and disorder. Xerox Palo Alto Research Center (preprint), 1985.
[20] B. Jähne, Digital image processing: concepts, algorithms and scientific applications. Springer-Verlag, London, UK, 1991.
[21] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Appl. Numer. Math., 35 (3): 177–219, 2000.
[22] R. M. Kirby, H. Marmanis, and D. H. Laidlaw, Visualizing multivalued data from 2D incompressible flows using concepts from painting. In D. Ebert, M. Gross, and B. Hamann, editors, IEEE Visualization '99, pages 333–340, San Francisco, 1999.
[23] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter, A. Keahey, and C. Hansen, Interactive texture-based volume rendering for large data sets. IEEE Computer Graphics and Applications, 21 (4): 52–61, 2001.
[24] A. Kolmogorov, Logical basis for information theory and probability theory. IEEE Trans. on Information Theory, 14 (5): 662–664, Sept. 1968.
[25] S. Kullback, Information Theory and Statistics. Dover Publ., Inc., 1968.
[26] Y. Li, Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport. J. Comput. Phys., 133 (2): 235–255, 1997.
[27] H. Liang and T. Maxworthy, An experimental investigation of swirling jets. Journal of Fluid Mechanics, 525: 115–159, Feb. 2005.
[28] S. Omohundro, Modelling cellular automata with partial differential equations. Physica D Nonlinear Phenomena, 10: 128–134, Jan. 1984.
[29] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum, 22 (4): 775–792, 2003.
[30] K. Riley, D. Ebert, C. Hansen, and J. Levit, Visually accurate multifield weather visualization. In Proc. of the 14th IEEE Visualization 2003, pages 279–286, Washington, DC, USA, 2003. IEEE Computer Society.
[31] E. Roeckner et al. The atmospheric general circulation model ECHAM 5. PART I: Model description. Tech. Rep. 349, Max Planck Inst. for Meteorol., Hamburg, Germany, 2003.
[32] M. Roth, Automatic Extraction of Vortex Core Lines and Other Line-Type Features for Scientific Visualization. PhD Thesis, Swiss Federal Institute of Technology, ETH Zärich, 2000.
[33] N. Sauber, H. Theisel, and H.-P. Seidel, Multifield-graphs: An approach to visualizing correlations in multifield scalar data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): 917–924, 2006.
[34] G. Scheuermann and X. Tricoche, Topological Methods for Flow Visualization. In C. D. Hansen and C. R. Johnson, editors, The Visualization Handbook, pages 341–358. Elsevier, Amsterdam, 2005.
[35] C. R. Shalizi, Optimal nonlinear prediction of random fields on networks. In M. Morvan and É. Rémila, editors, Discrete Models for Complex Systems, DMCS'03, volume AB of DMTCS Proceedings, pages 11–30. Discrete Mathematics and Theoretical Computer Science, 2003.
[36] C. R. Shalizi, R. Haslinger, J.-B. Rouquier, K. L. Klinkner, and C. Moore, Automatic filters for the detection of coherent structure in spatiotemporal systems. Physical Review E, 73: 036104, 2006.
[37] C. E. Shannon, A mathematical theory of communication. Bell System Technical Journal, 27: 379–423, July 1948.
[38] A. Telea and J. J. van Wijk, Simplified representation of vector fields. In VIS '99: Proceedings of the conference on Visualization '99, pages 35–42, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
[39] S. Wolfram, Cellular Automata and Complexity: Collected Papers. Addison-Wesley, 1994.
[40] P. Wong and R. Bergeron, Years of Multidimensional Multivariate Visualization. Scientific Visualization - Overviews, Methodologies and Techniques, IEEE Computer Society Press., 1997.

Index Terms:
Local statistical complexity, multifield visualization, time-dependent, coherent structures, feature detection, information theory, flow visualization.
Citation:
Heike Jänicke, Alexander Wiebel, Gerik Scheuermann, Wolfgang Kollmann, "Multifield Visualization Using Local Statistical Complexity," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1384-1391, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70615
Usage of this product signifies your acceptance of the Terms of Use.