This Article 
 Bibliographic References 
 Add to: 
An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)
November/December 2007 (vol. 13 no. 6)
pp. 1328-1335
Conveying shape using feature lines is an important visualization tool in visual computing. The existing feature lines (e.g., ridges, valleys, silhouettes, suggestive contours, etc.) are solely determined by local geometry properties (e.g., normals and curvatures) as well as the view position. This paper is strongly inspired by the observation in human vision and perception that a sudden change in the luminance plays a critical role to faithfully represent and recover the 3D information. In particular, we adopt the edge detection techniques in image processing for 3D shape visualization and present Photic Extremum Lines (PELs) which emphasize significant variations of illumination over 3D surfaces. Comparing with the existing feature lines, PELs are more flexible and offer users more freedom to achieve desirable visualization effects. In addition, the user can easily control the shape visualization by changing the light position, the number of light sources, and choosing various light models. We compare PELs with the existing approaches and demonstrate that PEL is a flexible and effective tool to illustrate 3D surface and volume for visual computing.

[1] A. Appel, The notion of quantitative invisibility and the machine rendering of solids. In Proceedings of the 1967 22nd national conference, pages 387–393. ACM Press, 1967.
[2] S. Bruckner and M. E. Gröller, Volumeshop: An interactive system for direct volume illustration. In IEEE Visualization 2005, pages 671–678.
[3] M. Burns, J. Klawe, S. Rusinkiewicz, A. Finkelstein, and D. DeCarlo, Line drawings from volume data. In Siggraph 2005, pages 512–518.
[4] J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 8: 679–698, 1986.
[5] F. Cazals and M. Pouget, Ridges and umbilics of a sampled smooth surface: a complete picture gearing toward topological coherence. In Rapport de Recherche RR-5294, INRIA, September, 2004.
[6] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, Suggestive contours for conveying shape. In Siggraph 2003, pages 848–855.
[7] M. Desbrun, Applied geometry: Discrete differential calculus for graphics. Comput. Graph. Forum, 23 (3): 269–269 (1), 2004.
[8] M. P. Docarmo, Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[9] S. Fleishman, I. Drori, and D. Cohen-Or, Bilateral mesh denoising. ACM Trans. Graph., 22 (3): 950–953, 2003.
[10] B. Gooch, P. J. Sloan, A. Gooch, P. Shirley, and R. F. Riesenfeld, Interactive technical illustration.
[11] D. Hearn and M. P. Baker, Computer Graphics. Prentice-Hall, 1997.
[12] A. Hertzmann and D. Zorin, Illustrating smooth surfaces. In Siggraph 2000, pages 517–526.
[13] E. R. S. Hodges, The Guild Handbook of Scientific Illustration. John Wiley and Sons, 2003.
[14] V. Interrante, H. Fuchs, and S. M. Pizer, Enhancing transparent skin surfaces with ridge and valley lines. In IEEE Visualization, pages 52–59, 1995.
[15] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T. Strothotte, A developer's guide to silhouette algorithms for polygonal models. IEEE Computer Graphics and Applications, 23 (4): 28–37, 2003.
[16] R. Kalnins, L. Markosian, B. Meier, M. Kowalski, J. Lee, P. Davidson, M. Webb, J. Hughes, and A. Finkelstein, WYSIWYG NPR: Drawing strokes directly on 3d models. In Siggraph 2002, pages 755–762.
[17] J. Kent, K. Mardia, and J. West, Ridge curves and shape analysis. In Monograph, Department of Statistics, University of Leeds., Leeds LS2 9JT, UK, May, 1996., 1996.
[18] G. L. Kindlmann, R. T. Whitaker, T. Tasdizen, and T. Möller, Curvature-based transfer functions for direct volume rendering: Methods and applications. In IEEE Visualization, pages 513–520, 2003.
[19] A. Lake, C. Marshall, M. Harris, and M. Blackstein, Stylized rendering techniques for scalable real-time 3d animation. In Proceedings of NPAR 2000, pages 13–20, 2000.
[20] A. Lu, C. J. Morris, D. S. Ebert, P. Rheingans, and C. D. Hansen, Non-photorealistic volume rendering using stippling techniques. In IEEE Visualization, pages 211–218, 2002.
[21] D. Marr and E. Hildreth, Theory of edge detection. In Proc. Royal Soc. London, volume 207, pages 187–217, 1980.
[22] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds. VisMath, pages 35–57, 2002.
[23] Z. Nagy and R. Klein, High-quality silhouette illustration for texture-based volume rendering. In Proc. WSCG, pages 301–308, 2004.
[24] Z. Nagy, J. Schneider, and R. Westermann, Interactive volume illustration. In VMV, pages 497–504, 2002.
[25] A. Ni, K. Jeong, S. Lee, and L. Markosian, Multi-scale line drawings from 3D meshes. In I3D 2006, pages 133–137.
[26] Y. Ohtake, A. Belyaev, and H. Seidel, Ridge-valley lines on meshes via implicit surface fitting. In Siggraph 2004, pages 609–612.
[27] S. E. Palmer, Vision Science: Photons to Phenomenology. The MIT Press, 1999.
[28] P. Rheingans and D. S. Ebert, Volume illustration: Nonphotorealistic rendering of volume models. IEEE Trans. Vis. Comput. Graph., 7 (3): 253–64, 2001.
[29] S. Rusinkiewicz, Estimating curvatures and their derivatives on triangle meshes. In 3DPVT 2004, pages 486–493.
[30] S. Rusinkiewicz, D. DeCarlo, and A. Finkelstein, Line drawings from 3D models. In Course Note of SIGGRAPH 2005.
[31] T. Saito and T. Takahashi, Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph., 24 (4): 197–206, 1990.
[32] S. Schein and G. Elber, Adaptive extraction and visualization of silhouette curves from volumetric datasets. Vis. Comput., 20 (4): 243–252, 2004.
[33] M. C. Sousa, A. A. Gooch, and B. Gooch, Illustrative scientific visualization framework. In EurographicsWorkshop on Computational Aesthetics, 2005.
[34] G. Stylianou and G. Farin, Crest lines for surface segmentation and flattening. In IEEE Transactions on Visualization and Computer Graphics 10, 5 (September/October), pages 536–544, 2004.
[35] N. A. Svakhine and D. S. Ebert, Interactive volume illustration and feature halos. In Pacific Graphics, pages 347–354, 2003.
[36] I. Viola, M. E. Gröller, M. Hadwiger, K. Bühler, B. Preim, M. C. Sousa, D. S. Ebert, and D. Stredney, Illustrative visualization. In IEEE Visualization, page 124, 2005.
[37] B. Wilson and K. Ma, Representing complexity in computer-generated pen-and-ink illustrations. In Proceedings of NPAR 2004, pages 129–137.
[38] A. Yuille, Zero crossings on lines of curvature. Graphical Models and Image Processing, 45: 68–87, 1989.

Index Terms:
Surface and volume illustration, illumination, photic extremum lines (PELs), silhouettes, suggestive contours, ridges and valleys, digital geometry processing.
Xuexiang Xie, Ying He, Feng Tian, Hock-Soon Seah, Xianfeng Gu, Hong Qin, "An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1328-1335, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70538
Usage of this product signifies your acceptance of the Terms of Use.