This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Taxonomy of Clutter Reduction for Information Visualisation
November/December 2007 (vol. 13 no. 6)
pp. 1216-1223
Information visualisation is about gaining insight into data through a visual representation. This data is often multivariate and increasingly, the datasets are very large. To help us explore all this data, numerous visualisation applications, both commercial and research prototypes, have been designed using a variety of techniques and algorithms. Whether they are dedicated to geo-spatial data or skewed hierarchical data, most of the visualisations need to adopt strategies for dealing with overcrowded displays, brought about by too much data to fit in too small a display space. This paper analyses a large number of these clutter reduction methods, classifying them both in terms of how they deal with clutter reduction and more importantly, in terms of the benefits and losses. The aim of the resulting taxonomy is to act as a guide to match techniques to problems where different criteria may have different importance, and more importantly as a means to critique and hence develop existing and new techniques.

[1] C. Ahlberg, C. Williamson, and B. Shneiderman, "Dynamic Queries for Information Exploration: An Implementation and Evaluation", Proc. CHI'92, Monterey, California, pp. 619–626, 1992, ACM Press
[2] C. Ahlberg and B. Shneiderman, "Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays", Proc. CHI'94, Boston, pp. 313–317, 1994, ACM Press
[3] C. Ahlberg, "Spotfire: an information exploration environment", ACM SIGMOD, 25 (4), pp. 25–29, Dec 1996
[4] B.B. Bederson, B. Shneiderman, and M. Wattenberg, "Ordered and Quantum Treemaps: Making Effective Use of 2D Space to Display Hierarchies", ACM Trans. on Graphics, 21 (4), pp. 833–854, Oct 2002
[5] BELIV '06, Proc. AVI workshop on BEyond time and errors, Eds. E. Bertini, C. Plaisant, G. Santucci, Venice, Italy, 2006, ACM Press
[6] E. Bertini and G. Santucci, "Quality metrics for 2D scatterplot graphics: automatically reducing visual clutter", Proc. Smart Graphics'04, Banff, Canada, pp. 77–89, 2004, Springer Verlag
[7] E. Bertini and G. Santucci, "Give chance a chance - modeling density to enhance scatter plot quality through random data sampling", Information Visualisation, 5 (2), pp. 95–110, June 2006
[8] D. Brodbeck, M. Chalmers, A. Lunzer, and P. Cotture, "Domesticating Bead: Adapting an Information Visualization System to a Financial Institution", Proc. InfoVis'97, Phoenix, pp. 73–80, 1997, IEEE
[9] S.K. Card, J.D. Mackinlay, and B. Shneiderman, Readings in Information Visualization: Using Vision to Think, Chapter 1&2, 1999, Morgan Kaufmann
[10] S.K. Card and J. Mackinlay, "The structure of the information visualization design space", Proc. InfoVis'97, pp. 92–100, 1997, IEEE
[11] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia, "3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual information", Proc. UIST'95, 1995, ACM Press
[12] K. Chen and L. Liu, "A Visual Framework Invites Human into the Clustering Process", Proc. Int. Conf. Scientific and Statistical Database Management, pp. 97–106, 2003, IEEE
[13] E.H Chi, "A Taxonomy of Visualization Techniques using the Data State Reference Model", Proc. InfoVis 2000, pp. 69–75, 2000, IEEE
[14] O. de Bruijn and R. Spence, "Rapid serial visual presentation: a space-time trade-off in information presentation", Proc. AVI 2000, Trento, Italy, pp. 51–60, 2000, ACM Press
[15] M. Derthick, M.G. Christel, A.G. Hauptmann, and H.D. Wactlar, "Constant Density Displays Using Diversity Sampling", Proc. InfoVis'03, Seattle, pp. 137–144, 2003, IEEE
[16] A. Dix and G.P. Ellis, "by chance: enhancing interaction with large data sets through statistical sampling", Proc. AVI'02, L'Aquila, Italy, pp. 167–176, 2002, ACM Press
[17] G.P. Ellis and A. Dix, "Density control through random sampling: an architectural perspective", Proc. Information Visualisation 2002, London, pp. 82–90, 2002, IEEE
[18] G.P. Ellis, E. Bertini, and A. Dix, "The Sampling Lens:Making Sense of Saturated Visualisations", CHI'05 Extended Abstracts, Portland, USA, pp. 1351–1354, 2005, ACM Press
[19] G.P. Ellis and A. Dix, "Enabling Automatic Clutter Reduction in Parallel Coordinate Plots", IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis'06), 12 (5), pp. 717–723, Sept 2006
[20] S. Engle, J. Shearer, M. Ogawa, S. Haroz, and K-L. Ma, "Free Your Data! Cenimation: Visualization for Constrained Displays", InfoVis'06 Contest, Baltimore, 2006, ACM Press
[21] I.A. Essa, "Ubiquitous Sensing for Smart and Aware Environments", IEEE Personal Communications, 2000, IEEE
[22] J-D. Fekete and C. Plaisant, "Interactive Information Visualization of a Million Items", Proc. InfoVis'02, pp. 117–124, 2002, IEEE
[23] Y-H. Fua, M.O. Ward, and E.A. Rundensteiner, "Hierarchical Parallel Coordinates for Exploration of Large Datasets", Proc. Visualization'99, Los Alamitos, CA, pp. 43–50, 1999, IEEE
[24] C.G. Healey, K.S. Booth, and J. Enns, "Visualizing Real-Time Multivariate Data Using Preattentive Processing", Trans. Modeling and Computer Simulation, 5 (3), pp. 190–221, 1995
[25] A.K. Jain, M.N. Murty, and P.J. Flynn, "Data Clustering: A Review", ACM Computing Surveys, 31 (3), pp. 264–323, Sept 1999
[26] D.F. Jerding and J.T. Stasko, "The Information Mural: A Technique for Displaying and Navigating Large Information Spaces", IEEE Trans. Visualization and Computer Graphics, 4 (3), pp. 257–271, 1998
[27] J. Johansson, P. Ljung, M. Jern, and M. Cooper, "Revealing Structure in Visualizations of Dense 2D and 3D Parallel Coordinates", Information Visualization, 5, pp. 125–136, 2006
[28] D.A. Keim, "Visual Techniques for Exploring Databases", Invited tutorial KDD'97, Newport Beach, CA, 1997
[29] D.A. Keim and A. Herrmann, "The Gridfit Algorithm: An Efficient and Effective Approach to Visualizing Large Amounts of Spatial Data", Proc. Visualization'98, Research Triangle Park, NC, pp. 181–188, 1998, IEEE
[30] D.A. Keim, "Designing Pixel-Oriented Visualization Techniques: Theory and Applications", IEEE Trans. Visualization and Computer Graphics, 6 (1), pp. 1–20, Mar 2000
[31] D.A. Keim, S C North, C Panse, and C P M Sips, "Pixel Based Visual Mining of Geospatial Data", Computers and Graphics, 28 (3), pp. 327–344, June 2004
[32] R. Kosara, S. Miksch, and H. Hauser, "Focus+Context Taken Literally", Computer Graphics & Applications, 22 (1), pp. 22–29, Jan 2002
[33] M. Kreuseler and H. Schumann, "Information visualization using a new Focus+Context Technique in combination with dynamic clustering of information space", Proc. NPIV'99, Missouri, pp. 1–5, 1999, ACM Press
[34] J. Lamping and R. Rao, "Visualizing Large Trees Using the Hyperbolic Browser", Proc. CHI'96, Vancouver, pp. 388–389, 1996, ACM Press
[35] Y.K. Leung and M.D. Apperley, "A Review and Taxonomy of Distortion-Oriented Presentation Techniques", ACM Trans. Computer-Human Interaction, 1 (2), pp. 126–160, June 1994
[36] F. Murtagh, "Clustering in Massive Data Sets", Chemical Data Analysis in the Large, Proc. Beilstein-Institut Workshop, May, 2000, Bozen, Italy
[37] M. Novotny and H. Hauser, "Outlier-Preserving Focus+Context Visualization in Parallel Coordinates", IEEE Trans. Visualization and Computer Graphics, 12 (5), pp. 893–900, Sept 2006
[38] W. Peng, M.O. Ward, and E.A. Rundensteiner, "Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering", Proc. Infovis'04, Austin, Texas, 2004, IEEE
[39] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman, "LifeLines: Visualizing Personal Histories", Proc. CHI'96, pp. 221–227, 1996, ACM Press
[40] D. Rafiei and S. Curial, "Effectively Visualizing Large Networks Through Sampling", Proc. Visualization'05, pp. 48–55, 2005, IEEE
[41] R. Rao and S. Card, "The Table Lens: Merging graphical and symbolic representations in an interactive focus + context visualization for tabular information", Proc. CHI'94, Boston, pp. 111–117, 1994, ACM Press
[42] M. Sarkar, S.S. Snibbe, O.J. Tversky, and S.P. Reiss, "Stretching the rubber sheet: a metaphor for viewing large layouts on small screens", Proc. UIST'93, Atlanta, Georgia, pp. 81–91, 1993, ACM Press
[43] B. Shneiderman, "The Eyes Have It; A Task by Data Type Taxonomy for Information Visualization", Univ. of Maryland, TR-96-66, 1996
[44] J. Stasko and E. Zhang, "Focus+Context Display and Navigation Techniques for Enhancing Radial, Space-Filling Hierarchy Visusalization", Proc. InfoVis 2000, 2000, IEEE
[45] M. Stone, K. Fishkin, and E.A. Bier, "The Movable Filter as a User Interface Tool", Proc. CHI'94, pp. 306–312, 1994, ACM Press
[46] M. Trutschl, G. Grinstein, and U. Cvek, "Intelligently Resolving Point Occlusion", Proc. InfoVis'03, pp. 131–136, 2003, IEEE
[47] C. Waldeck and D. Balfanz, "Mobile liquid 2D scatter space (ML2DSS)", Proc. Information Visualisation 2004, London, pp. 494–498, 2004, IEEE
[48] M.O. Ward, "A taxonomy of glyph placement strategies for multidimensional data visualization", Information Visualization, 1, pp. 194–210, 2002
[49] E.J. Wegman and Q. Luo, "High Dimensional Clustering Using Parallel Coordinates and the Grand Tour", Computing Science and Statistics, 28, pp. 352–360, July 1996
[50] N. Wong, S. Carpendale, and S. Greenberg, "EdgeLens: An Interactive Method for Managing Edge Congestion in Graphs", Proc. InfoVis'03, pp. 51–58, 2003, IEEE
[51] P.C. Wong and R.D. Bergeron, "30 Years of Multidimensional Multivariate Visualization", Scientific Visualization: Overviews, Methodologies & Techniques, 1997
[52] A. Woodruff, J. Landay, and M. Stonebraker, "Constant Density Visualizations of Non-Uniform Distributions of Data", Proc. UIST'98, San Francisco, pp. 19–28, 1998, ACM Press
[53] J. Yang, M.O. Ward, and E.A. Rundensteiner, "Visual hierarchical dimension reduction for exploration of high dimensional datasets", Proc. Sym. Data visualisation '03, 2003, Eurographics
[54] L. Zhang, C. Tang, Y. Shi, Y. Song, A. Zhang, and M. Ramanathan, "VizCluster and Its Application on Clustering Gene Expression Data", Distributed and Parallel Databases, 13 (1), pp. 73 – 97, 2003

Index Terms:
Clutter reduction, information visualisation, occlusion, large datasets, taxonomy.
Citation:
Geoffrey Ellis, Alan Dix, "A Taxonomy of Clutter Reduction for Information Visualisation," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1216-1223, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70535
Usage of this product signifies your acceptance of the Terms of Use.