This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
UKSim 2009: 11th International Conference on Computer Modelling and Simulation
Novel Voice Activity Detection Based on Vector Quantization
March 25-March 27
ISBN: 978-0-7695-3593-7
In this paper we develop a voice activity detection algorithm based on spectrum estimation of speech and non-speech segments using Vector Quantization method. In this method, we try to classify entry speech signal to speech and non-speech classes. Commonly, the performance of the voice activity detection (VAD) algorithms in non-stationary background noise is not so satisfying under low SNR, so we try to concentrate our study on this issue. The model of a non-speech is a codebook generated from noise and model of speech is several codebook generated from speech contaminated by noise in some different SNR. The labeling is performed by evaluating the distortions between the entry signal samples and the designed models. Our simulation results based on the Persian speech database show that the VQ based VAD is high performance in low SNR conditions (SNR < 5 dB).
Citation:
Meysam Asgari, Abolghasem Sayadian, Farhad Tehranipour, Ali Mostafavi, "Novel Voice Activity Detection Based on Vector Quantization," uksim, pp.255-257, UKSim 2009: 11th International Conference on Computer Modelling and Simulation, 2009
Usage of this product signifies your acceptance of the Terms of Use.