This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR'04)
Character Image Reconstruction from a Feature Space Using Shape Morphing and Genetic Algorithms
Kokubunji, Tokyo, Japan
October 26-October 29
ISBN: 0-7695-2187-8
Chihiro Iga, Hosei University
Toru Wakahara, Hosei University
This paper proposes a powerful method that realizes image reconstruction from a feature space in optical character recognition. Due to the invisibility of a high-dimensional feature space, it is difficult to fully understand advantages and disadvantages of the given feature space and search for more robust features. The proposed method consists of two parts. The first part is 2D shape morphing based on a mesh model via bilinear transformation. The second part is use of genetic algorithms for determining optimal morphing parameters. Given an arbitrary feature vector in a feature space the proposed method deforms each category?s template to yield the maximal fitness value against the given feature vector and the deformed template thus obtained is considered as a reconstructed image from a feature space. In experiments we use the public handwritten numeral database IPTP CDROM1B and a gradient feature space. We first demonstrate a high matching ability of the proposed mesh model. Then, we show promising experimental results of image reconstruction from a feature space and discuss how to use this technique to improve recognition performance.
Citation:
Chihiro Iga, Toru Wakahara, "Character Image Reconstruction from a Feature Space Using Shape Morphing and Genetic Algorithms," iwfhr, pp.341-346, Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR'04), 2004
Usage of this product signifies your acceptance of the Terms of Use.