This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Improving the selection and detection of visual landmarks through object tracking
Anchorage, AK, USA
June 23-June 28
ISBN: 978-1-4244-2339-2
P. Espinace, Department of Computer Science, Pontificia Universidad Catolica de Chile Casilla 306, Santiago 22, Chile
A. Soto, Department of Computer Science, Pontificia Universidad Catolica de Chile Casilla 306, Santiago 22, Chile
The unsupervised selection and posterior recognition of visual landmarks is a highly valuable perceptual capability for a mobile robot. Recently, in [6], we propose a system that aims to achieve this capability by combining a bottom-up data driven approach with top-down feedback provided by high level semantic representations. The bottom-up approach is based on three main mechanisms: visual attention, area segmentation, and landmark characterization. The top-down feedback is based on two information sources: i) An estimation of the robot position that reduces the searching scope for potential matches with previously selected landmarks, ii) A set of weights that, according to the results of previous recognitions, controls the influence of different segmentation algorithms in the recognition of each landmark. In this paper we explore the benefits of extending our previous work by including a visual tracking step for each of the selected landmarks. Our intuition is that the inclusion of a tracking step can help to improve the model of each landmark by associating and selecting information from its most significant views. Furthermore, it can also help to avoid problems related to the selection of spurious landmarks. Our results confirm these intuitions by showing that the inclusion of the tracking step produces a significant increase in the recall rate for landmark recognition.
Citation:
P. Espinace, A. Soto, "Improving the selection and detection of visual landmarks through object tracking," cvprw, pp.1-7, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008
Usage of this product signifies your acceptance of the Terms of Use.