This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Gromov-Hausdorff distances in Euclidean spaces
Anchorage, AK, USA
June 23-June 28
ISBN: 978-1-4244-2339-2
Facundo Memoli, Stanford University, Mathematics Department, CA 94305, USA
The purpose of this paper is to study the relationship between measures of dissimilarity between shapes in Euclidean space. We first concentrate on the pair Gromov-Hausdorff distance (GH) versus Hausdorff distance under the action of Euclidean isometries (EH). Then, we (1) show they are comparable in a precise sense that is not the linear behaviour one would expect and (2) explain the source of this phenomenon via explicit constructions. Finally, (3) by conveniently modifying the expression for the GH distance, we recover the EH distance. This allows us to uncover a connection that links the problem of computing GH and EH and the family of Euclidean Distance Matrix completion problems. The second pair of dissimilarity notions we study is the so called Lp-Gromov-Hausdorff distance versus the Earth Mover’s distance under the action of Euclidean isometries. We obtain results about comparability in this situation as well.
Citation:
Facundo Memoli, "Gromov-Hausdorff distances in Euclidean spaces," cvprw, pp.1-8, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008
Usage of this product signifies your acceptance of the Terms of Use.