This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Dealing with occlusion in a probabilistic object tracking method
Anchorage, AK, USA
June 23-June 28
ISBN: 978-1-4244-2339-2
Nicolas Amezquita, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
Rene Alquezar, Universitat Politécnica de Catalunya, Campus Nord, Edifici Omega, 08034 Barcelona, Spain
Francesc Serratosa, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
This paper presents an extension of a previously reported method for object tracking in video sequences [9] to handle object occlusion. The new tracking method is embedded in a system that integrates recognition and tracking in a probabilistic framework. Our system uses object recognition results provided by a neural net that are computed from colour features of image regions for each frame. The location of tracked objects is represented through probability images that are updated dynamically using both recognition and tracking results. From these probabilities and a simple prediction of the apparent motion of the object in the image, a binary decision is made for each pixel and object. The new features of the proposed tracking method include the automated detection of occlusion and the adaptation of the motion prediction to the cases of entering occlusion, full occlusion and exiting occlusion. Experimental results show the effectiveness of the method except when the target object is occluded by an object with a similar appearance.
Citation:
Nicolas Amezquita, Rene Alquezar, Francesc Serratosa, "Dealing with occlusion in a probabilistic object tracking method," cvprw, pp.1-8, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008
Usage of this product signifies your acceptance of the Terms of Use.