This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
A probabilistic representation of LiDAR range data for efficient 3D object detection
Anchorage, AK, USA
June 23-June 28
ISBN: 978-1-4244-2339-2
Theodore C. Yapo, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Charles V. Stewart, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Richard J. Radke, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
We present a novel approach to 3D object detection in scenes scanned by LiDAR sensors, based on a probabilistic representation of free, occupied, and hidden space that extends the concept of occupancy grids from robot mapping algorithms. This scene representation naturally handles LiDAR sampling issues, can be used to fuse multiple LiDAR data sets, and captures the inherent uncertainty of the data due to occlusions and clutter. Using this model, we formulate a hypothesis testing methodology to determine the probability that given 3D objects are present in the scene. By propagating uncertainty in the original sample points, we are able to measure confidence in the detection results in a principled way. We demonstrate the approach in examples of detecting objects that are partially occluded by scene clutter such as camouflage netting.
Citation:
Theodore C. Yapo, Charles V. Stewart, Richard J. Radke, "A probabilistic representation of LiDAR range data for efficient 3D object detection," cvprw, pp.1-8, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008
Usage of this product signifies your acceptance of the Terms of Use.