The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (2002 vol.28)
pp: 997-1007
ABSTRACT
<p><b>Abstract</b>—This paper presents a new approach to software reliability modeling by grouping data into clusters of homogeneous failure intensities. This series of data clusters associated with different time segments can be directly used as a piecewise linear model for reliability assessment and problem identification, which can produce meaningful results early in the testing process. The dual model fits traditional software reliability growth models (SRGMs) to these grouped data to provide long-term reliability assessments and predictions. These models were evaluated in the testing of two large software systems from IBM. Compared with existing SRGMs fitted to raw data, our models are generally more stable over time and produce more consistent and accurate reliability assessments and predictions.</p>
INDEX TERMS
Software reliability, data grouping, cluster analysis, software reliability growth models (SRGMs), input domain reliability models (IDRMs), data cluster based reliability models (DCRMs).
CITATION
Jeff Tian, "Better Reliability Assessment and Prediction through Data Clustering", IEEE Transactions on Software Engineering, vol.28, no. 10, pp. 997-1007, October 2002, doi:10.1109/TSE.2002.1041055
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool