
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Shlomi Dolev, Amos Israeli, Shlomo Moran, "Analyzing Expected Time by SchedulerLuck Games," IEEE Transactions on Software Engineering, vol. 21, no. 5, pp. 429439, May, 1995.  
BibTex  x  
@article{ 10.1109/32.387472, author = {Shlomi Dolev and Amos Israeli and Shlomo Moran}, title = {Analyzing Expected Time by SchedulerLuck Games}, journal ={IEEE Transactions on Software Engineering}, volume = {21}, number = {5}, issn = {00985589}, year = {1995}, pages = {429439}, doi = {http://doi.ieeecomputersociety.org/10.1109/32.387472}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Software Engineering TI  Analyzing Expected Time by SchedulerLuck Games IS  5 SN  00985589 SP429 EP439 EPD  429439 A1  Shlomi Dolev, A1  Amos Israeli, A1  Shlomo Moran, PY  1995 KW  Selfstabilizing systems KW  leader election KW  randomized distributed algorithms. VL  21 JA  IEEE Transactions on Software Engineering ER   
[1] K. Abrahamson,A. Adler,L. Higham,, and D. Kirkpatrick,“Probabilistic solitude verification on a ring,” Proc. Fifth Ann. ACM Symp. on Principles of Distributed Computing,Quebec City, Aug. 1986 pp. 161173.
[2] H. Attiya,M. Snir,, and M. Warmuth,“Computing on an anonymous ring,” J. ACM, vol. 35, no. 4, pp. 845875, Oct. 1988.
[3] K. Abrahamson,“On achieving consensus using a shared memory,” Proc. Seventh Ann. ACM Symp. Principles Distributed Computing,Toronto, Canada, pp. 291302, Aug. 1988.
[4] E. Angnostou and R. ElYaniv,“More on the power of random walks: Uniform selfstabilizing algorithms,” Lecture Notes in Computer Science 579: Distributed Algorithms, S. Toueg, P.G. Spirakis, and L. Kirousis, eds., pp. 3151, SpringerVerlag, 1992.
[5] A. Arora and M. Gouda:, “Distributed reset,” Lecture Notes inComputer Science 472: Foundations of Software Technology and TheoreticalComputer Science, K.V. Nori and C.E. Veni Madhavan, eds., pp. 316331, SpringerVerlag, 1990.
[6] Y. Afek,S. Kutten,, and M. Yung,“Memoryefficient selfstabilization on general networks,” Lecture Notes in Computer Science 486: Distributed Algorithms, J. Van Leeuwen and N. Santoro, eds., pp. 1528, SpringerVerlag, 1991.
[7] Y. Afek,S. Kutten, and M. Yung,“Local detection for global selfstabilization,” preprint.
[8] G.M. Brown,M.G. Gouda,, and C.L. Wu,“A selfstabilizing token system,” Proc. 20th Ann. Hawaii Int’l Conf. System Sciences 1987, pp. 218223.
[9] J.E. Burns and J. Pachl,“Uniform selfstabilizing rings,” ACM Trans. Programming Languages and Systems, vol. 11, no. 2, pp. 330344, Apr. 1989,.
[10] J.E. Burns,“Selfstabilizing rings without demons,” Technical Report GITICS87/36, Georgia Inst. Technology.
[11] B. Chor, and B. Coan,“A simple and efficient randomized Byzantine agreement algorithm,” IEEE Trans. Software Engineering, vol. 11, no. 6, pp. 531539, 1985.
[12] E.W. Dijkstra,“Selfstabilizing systems in spite of distributed control,” Comm. ACM, vol. 17, no. 11 pp. 643644, 1974,.
[13] S. Dolev,A. Israeli,, and S. Moran,“Uniform dynamic selfstabilizing leader election,” Lecture Notes in Computer Science 579: Distributed Algorithms, S. Toueg, P.G. Spirakis, and L. Kirousis, eds., pp. 163180, SpringerVerlag, 1992.
[14] S. Dolev,A. Israeli,, and S. Moran,“Self stabilization of dynamic systems assuming only read/write atomicity,” Distributed Computing, vol. 7, pp. 316, 1993.
[15] S. Dolev,A. Israeli,, and S. Moran,“Uniform selfstabilizing leader election, Part 1: Complete graph protocol,” Technical Report 94807, Computer Science Dept., Technion, Israel
[16] S. Dolev,A. Israeli,“Uniform selfstabilizing leader election, Part 2: General graph protocol,” Technical Report 94039, Dept. of Computer Science, Texas A&M Univ.
[17] S. Dolev,“Optimal time selfstabilization in uniform dynamic systems,” Sixth IASTED Int’l Conf. Parallel and Distributed Computing and Systems, pp. 2528, 1994.
[18] S. Dolev, and J.L. Welch,“Waitfree clock synchronization,” Proc. 12th Ann. ACM Symp. Principles of Distributed Computing, pp. 97108, 1993.
[19] R. G. Gallager,“Finding a leader in networks with O(E) + O(N log N)messages,” Internal Memo., M.I.T., Cambridge, Mass., 1978.
[20] P. Humblet,“Selecting a leader in a clique in O(n log n) messages. Internal Memo, Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass., 1984.
[21] A. Israeli and M. Jalfon,“Token management schemes and random walks yield selfstabilizing mutual exclusion,” Proc. Ninth Ann. ACM Symp. Principles of Distributed Computation,Quebec City, Aug. 1990, pp. 119132.
[22] A. Israeli and M. Jalfon,“Selfstabilizing ring orientation,” Lecture Notes in Computer Science 486: Distributed Algorithms, J. Van Leeuwen and N. Santoro, eds., pp. 114, SpringerVerlag, 1991.
[23] A. Itai and M. Rodeh,“Probabilistic methods for breaking symmetry in distributed networks,” Information and Computation, vol. 88, no. 1, pp. 6087, 1990.
[24] E. Korach,S. Kutten,, and S. Moran,“A modular technique for the design of efficient distributed leader finding algorithms,” ACM Trans. Programming Languages and Systems, vol. 12, no. 1, pp. 8410, 1990.
[25] E. Korach,S. Moran,, and S. Zaks,“Tight lower and upper bounds for some distributed algorithms for completenetwork of processors,” Proc. Third Ann. ACM Symp. Principles of Distributed Computing, pp. 199207, 1984.
[26] S. Katz and K. J. Perry,“Selfstabilizing extensions for messagepassing systems,” Proc. Ninth Ann. ACM Symp. Principles of Distributed Computing,Quebec City, pp. 91101, Aug. 1990.
[27] L. Lamport,“The mutual exclusion problem: Part IIStatement and solutions,” J. Assoc. for Computing Machinery, vol. 33, no. 2, pp. 327348, 1986.
[28] Y. Matias and Y. Afek,“Simple and efficient election algorithms for anonymous networks,” manuscript, 1989.
[29] B. Schieber and M. Snir,“Calling names on nameless networks,” Proc. Eighth Ann. ACM Symp. Principles of Distributed Computing,Edmonton, pp. 319328, Aug. 1989.
[30] M. Tchuente,“Sur l’autostabilisation dans un réseau d’ordinateurs,” RAIRO Inf. Theor. 15, pp. 4766, 1981.