
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
D. FernandezBaca, "Allocating Modules to Processors in a Distributed System," IEEE Transactions on Software Engineering, vol. 15, no. 11, pp. 14271436, November, 1989.  
BibTex  x  
@article{ 10.1109/32.41334, author = {D. FernandezBaca}, title = {Allocating Modules to Processors in a Distributed System}, journal ={IEEE Transactions on Software Engineering}, volume = {15}, number = {11}, issn = {00985589}, year = {1989}, pages = {14271436}, doi = {http://doi.ieeecomputersociety.org/10.1109/32.41334}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Software Engineering TI  Allocating Modules to Processors in a Distributed System IS  11 SN  00985589 SP1427 EP1436 EPD  14271436 A1  D. FernandezBaca, PY  1989 KW  distributed system; complexity; execution costs; P=NP; polynomialtime epsilon approximate algorithm; local search algorithm; polynomial time; iteration; optimum assignment; communication graph; planar; bipartite; partial ktree; almosttree; module allocation problem; computational complexity; distributed processing; graph theory VL  15 JA  IEEE Transactions on Software Engineering ER   
The author studies the complexity of the problem of allocating modules to processes in a distributed system to minimize total communication and execution costs. He shows that unless P=NP, there can be no polynomialtime epsilon approximate algorithm for the problem, nor can there exist a local search algorithm that requires polynomial time per iteration and yields an optimum assignment. Both results hold even if the communication graph is planar and bipartite. On the positive side, it is shown that if the communication graph is a partial ktree or an almosttree with parameter k, the module allocation problem can be solved in polynomial time.
[1] S. Arnborg, "Efficient algorithms for combinatorial problems on graphs with bounded decomposabilityA survey,"BIT, vol. 25, pp. 305314, 1985.
[2] S. Arnborg, D. G. Corneil, and A. Proskurowski, "Complexity of finding embeddings in aktree,"SIAM J. Algebraic and Discrete Methods, vol. 8, no. 2, 1987, pp. 277284.
[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms. Menlo Park, CA: AddisonWesley, 1974.
[4] S. Arnborg and A. Proskurowski, "Characterization and recognition of partial 3trees,"SIAM J. Alg. Discr. Methods, vol. 7, pp. 305 314, 1986.
[5] S. Arnborg and A. Proskurowski, "Lineartime algorithms for NPhard problems restricted to partialktrees," manuscript.
[6] H. L. Bodlaender, "Classes of graphs with bounded treewidth," Dep. Comput. Sci., Univ. Utrecht, The Netherlands, Tech. Rep. RUUCS8622, Dec. 1986.
[7] H. L. Bodlaender, "Some classes of graphs with bounded treewidth,"Bull. EATCS, vol. 36, pp. 116126, 1988.
[8] S. Bokhari, "A shortest tree algorithm for optimal assignments across space and time in a distributed processor system,"IEEE Trans. Software Eng., vol. SE7, no. 6, pp. 583589, 1981.
[9] U. Bertelèand F. Brioschi,Nonserial Dynamic Programming. New York: Academic, 1972.
[10] W. W. Chu, L. J. Holloway, M. Lan, and K. Efe, "Task allocation in distributed data processing,"Computer, pp. 5769, Nov. 1980.
[11] E. S. Elmallah and C. J. Colbourn, "Reliability ofΔYnetworks,"Congressus Numerantium, vol. 48, pp. 4954, 1985.
[12] S. Even, A. Itai, and A. Shamir, "On the complexity of multicommodity flow problems,"SIAM J. Comput., vol. 5, no. 4, pp. 691 703, 1976.
[13] D. FernándezBaca and G. Slutzki, "Solving parametric problems on trees," Dep. Comput. Sci., Iowa State Univ., Tech. Rep. 8712, 1987, to appear inJ. Algorithms.
[14] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to Theory of NPCompleteness. San Francisco, CA: Freeman, 1979.
[15] Y. Gurevich, L. Stockmeyer, and U. Vishkin, "Solving NPhard problems on graphs that are almost trees and an application to facility location problems,"J. ACM, vol. 31, no. 3, pp. 459473, 1984.
[16] D. Gusfield, "Parametric combinatorial computing and a problem of module distribution,"J. ACM, no. 3, pp. 551563, 1983.
[17] D. Lichtenstein, "Planar formulae and their uses,"SIAM J. Comput., vol. 11, no. 2, pp. 329343, 1982.
[18] V. M. Lo, "Heuristic algorithms for task assignment in distributed systems,"IEEE Trans. Comput., vol. C37, no. 11, pp. 13841397, 1988.
[19] R. Lipton and R. Tarjan, "Applications of a planar separator theorem,"SIAM J. Comput., vol. 9, no. 3, pp. 615627, 1980.
[20] C. H. Papadimitriou and K. Steiglitz, "The complexity of local search for the traveling salesman problem,"SIAM J. Comput., vol. 6, no. 1, pp. 7683, 1977.
[21] C. H. Papadimitriou and K. Steiglitz,Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ: PrenticeHall, 1982.
[22] A. Rosenthal, "Dynamic programming is optimal for nonserial optimization problems,"SIAM J. Comput., vol. 11, no. 1, pp. 4759, 1982.
[23] N. Robertson and P. D. Seymour, "Graph minors XIII: The disjoint paths problem," Manuscript, Sept. 1986.
[24] J. B. Sinclair, "Efficient computation of optimal assignments for distributed tasks,"J. Parallel Distributed Comput., vol. 4, pp. 342362, 1987.
[25] H. Stone, "Multiprocessor scheduling with the aid of network flow algorithms,"IEEE Trans. Software Eng., vol. SE3, pp. 8594, 1977.
[26] H. Stone, "Critical load factors in twoprocessor distributed systems,"IEEE Trans. Software Eng., vol. SE4, pp. 254258, 1978.
[27] S. Sahni and T. Gonzalez, "Pcomplete approximation problems,"J. ACM, vol. 23, pp. 55565, 1976.
[28] D. Towsley, "Allocating programs containing branches and loops within a multiple processor system,"IEEE Trans. Software Eng., vol. SE12, pp. 10181024, Oct. 1986.