This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On the Cycle Time Distribution in a Two-Stage Cyclic Network with Blocking
October 1989 (vol. 15 no. 10)
pp. 1206-1216

[1] I. F. Akyildiz, "Exact product form solution for queueing networks with blocking,"IEEE Trans. Comput., vol. C-36, no. 1, pp. 122- 125, 1987.
[2] S. Balsamo, V. De Nitto Personé, and G. Iazeolla, "Identity and reducibility properties of some blocking and non-blocking mechanisms in congested networks," inFlow Control of Congested Networks, Nato ASI Series, Comput. Syst. Sci., vol. 38, A. R. Odoni, L. Bianco, and G. Szegö, Eds. New York: Springer-Verlag, 1987, pp. 243-254.
[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, "Open, closed, and mixed networks of queues with different classes of customers,"J. ACM, vol. 22, no. 2, pp. 248-260, 1975.
[4] O. J. Boxma, "The cyclic queue with one general and one exponential server,"Adv. Appl. Prob., vol. 15, pp. 857-873, 1983.
[5] O. J. Boxma and P. Donk, "On response tiome and cycle time distribution in a two-stage cyclic queue,"Perform. Eval., vol. 2, pp. 181-194, 1982.
[6] O. J. Boxma, F. Kelly, and A. G. Kohneim, "The product form sujourn time distribution in cyclic exponential queues,"J. ACM, vol. 31, pp. 128-133, 1984.
[7] O. J. Boxma, "Models of two queues: A few new views," inTeletraffic Analysis and Computer Performance Evaluation, O. J. Boxma, L. Cohen, and H. C. Tijms, Eds, Amsterdam, The Netherlands: North-Holland, 1986, pp. 75-98.
[8] O. J. Boxma and A. G. Konheim, "Approximate analysis of exponential queueing systems with blocking,"Acta Inform., vol. 15, pp. 19-66, 1981.
[9] S. Carbini, L. Donatiello, and G. Iazeolla, "An efficient algorithm for the cycle time distribution in two-stage cyclic network with a nonexponential server," inTeletraffic Analysis and Computer Performance Evaluation, O. J. Boxma, L. Cohen, and H. C. Tijms, Eds. Amsterdam, The Netherlands: North-Holland, 1986, pp. 99-115.
[10] W. M. Chow, "The cycle time distribution of exponential cyclic queues,"J. ACM, vol. 27, pp. 281-286, 1980.
[11] H. Daduna, "The cycle lime distribution of cyclic two-stage queues with non-exponential servers," inModelling and Performance Evaluation Methodology, F. Baccelli and G. Fayolle, Eds. Berlin: Springer, 1984, pp. 641-653.
[12] H. Daduna, "Two-stage queues with houri-exponential servers: Steady-state and cycle time,"Oper. Res., vol. 34, no. 3, pp. 445-459, 1986.
[13] S. Gershwin and U. Berman, "Analysis of transfer lines consisting of two unreliable machines with random processing times and finite storage buffers,"AIIE Trans., vol. 13, no. 1. pp. 2-11, 1981.
[14] S. S. Lavenberg, "The steady-state queueing time distribution for the M/G/1 finite capacity queue,"Management Sci., vol. 21, no. 5, Jan. 1975.
[15] G. Latouche and M. Neuts, "Efficient algorithmic solution to exponential tandem queues with blocking,"SIAM. Alg. Dis. Math., vol. 1, Mar. 1980.
[16] L. Kleinrock,Queueing Syswms, vol. 2. New York: Wiley, 1976.
[17] M. Neuts,Matrix Geometrix Solution in Stochastic Models. Baltimore, MD: Johns Hopkins University Press, 1981.
[18] M. Neuts, "Explicit steady-state solution to some elementary queueing models,"Oper. Res., vol. 30, pp. 480-489, 1982.
[19] R. O. Onvural and H. G. Perros, "On equivalences of blocking mechanisms in queueing networks with blocking,"Oper. Res. Lett., vol. 5, 6, pp. 293-297, Dec. 1986.
[20] H. G. Perros, "Queueing networks with blocking: A bibliography,"ACM Sigmetrics, Perform. Eval. Rev., Aug. 1984.
[21] H. G. Perros and T. Altiok, "Approximate analysis of open networks of queues with blocking: tandem configurations,"IEEE Trans. Software Eng., vol. SE-12, pp. 450-462, Mar. 1986.
[22] R. Suri and G. Diehl, "A new building block for performance evaluation of queueing networks with finite buffers,"ACM Perform. Eval. Rev., 1984, pp. 134-142.
[23] R. Shassenberger and H. Daduna, "The time for a round trip in a cycle of exponential queues,"J. ACM, vol. 30, pp. 181-194, 1983.
[24] A. Van de Lievoort and L. Lipsky, "A matrix-algebraic solution approach to twoKmservers in a loop,"J. ACM, vol. 33, no. 1, pp. 207-223, 1986.

Index Terms:
BCMP network; blocking; cycle time distribution; cycte time moments; performance analysis; state space transformation; two-stage cyclic queuea
Citation:
S. Balsamo, L. Donatiello, "On the Cycle Time Distribution in a Two-Stage Cyclic Network with Blocking," IEEE Transactions on Software Engineering, vol. 15, no. 10, pp. 1206-1216, Oct. 1989, doi:10.1109/TSE.1989.559769
Usage of this product signifies your acceptance of the Terms of Use.