This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Learning Dominance Relations in Combined Search Problems
August 1988 (vol. 14 no. 8)
pp. 1155-1175

Dominance relations are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.

[1] Special Issue on Non-Monotonic Logic,Artif. Intell., vol. 13, 1980.
[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms. Menlo Park, CA: Addison-Wesley, 1974.
[3] S. Amarel, "Program synthesis as a theory formation task: Problem representations and solution methods," inMachine Learning: An Artificial Intelligence Approach, Vol. II, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Los Altos, CA: Morgan Kaufmann, 1986.
[4] P. M. Andrae, "Constraint limited generalization: Acquiring procedures from examples," inProc. Nat. Conf. Artif. Intell., AAAI, Austin, TX, 1984, pp. 6-10.
[5] Y. Anzai and H. Simon, "The theory of learning by doing,"Psychol. Rev., vol. 36, no. 2, pp. 124-140, 1979.
[6] A. A. Araya, "Learning problem classes by means of experimentation and generalization," inProc. Nat. Conf. Artif. Intell., AAAI, Austin, TX, 1984, pp. 11-15.
[7] A. Barr and E. A. Feigenbaum,The Handbook of Artificial Intelligence, Vols. 1-3, Los Altos, CA: William Kaufmann, 1981, 1982.
[8] R. Bellman and S. Dreyfus,Applied Dynamic Programming. Princeton, NJ: Princeton Univ. Press, 1962.
[9] F. M. Brown and S. A. Tarnlund, "Inductive reasoning on recursive equations,"Artif. Intell., vol. 12, pp. 207-229, 1979.
[10] M. H. Burstein, "Concept formation by incremental analogical reasoning and debugging," inMachine Learning: An Artificial Intelligence Approach., Vol. II, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Los Altos, CA: Morgan Kaufmann, 1986.
[11] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, "An overview of machine learning," inMachine Learning, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Palo Alto, CA: Tioga, 1983.
[12] J. G. Carbonell, "Learning by analogy: Formulating and generalizing plans from past experiences," inMachine Learning, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Palo Alto, CA: Tioga, 1983.
[13] R. Davis and R. B. Lenat,Knowledge-Based Systems in Artificial Intelligence. New York: McGraw-Hill, 1982.
[14] N. Dershowitz and Z. Manna, "The evolution of programs: Automatic program modification,"IEEE Trans. Software Eng., vol. SE- 3, no. 6, pp. 377-385, 1977.
[15] T. G. Dietterich and R. S. Michalski, "A comparative review of selected methods for learning from examples," inMachine Learning, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Palo Alto, CA: Tioga, 1983.
[16] J. Dole, "A truth maintenance system,"Artif. Intell., vol. 12, no. 3, pp. 231-272, 1979.
[17] T. G. Evans, "A program for the solution of geometric analogy intelligence test questions," inSemantic Information Processing, M. L. Minsky, Eds. Cambridge, MA: M.I.T. Press, 1968.
[18] R. E. Fikes, P. E. Hart, and N. J. Nilsson, "Learning and executing generalized robot plans,"Artif. Intell., vol. 3, pp. 251-288, 1972.
[19] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.
[20] E. Horowitz and S. Sahni,Fundamentals of Computer Algorithms. Rockville, MD: Computer Sci. Press, 1978.
[21] T. Ibaraki, "The power of dominance relations in branch-and-bound algorithms,"J. ACM, vol. 24, no. 2, pp. 264-279, 1977.
[22] R. Kling, "A paradigm for reasoning by analogy,"Artif. Intell., vol. 2, pp. 147-178, 1971.
[23] P. Langley, "Data-driven discovery of physical laws,"Cognitive Sci., vol. 5, pp. 31-54, 1981.
[24] P. Langley, G. L. Bradshaw, and H. A. Simon, "Rediscovering chemistry with the BACON system," inMachine Learning, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Pato Alto, CA: Tioga, 1983.
[25] D. B. Lenat, F. Hayes-Roth, and P. Klahr, "Cognitive economy in artificial intelligence systems," inProc. IJCAI, 1979, pp. 531-536.
[26] D. B. Lenat, "The nature of heuristics,"Artif. Intell., vol. 19, no. 2, pp. 189-249, 1982.
[27] D. B. Lenat, "Theory formation by heuristic search; The nature of heuristics II: Background and examples,"Artif. Intell., vol. 21, pp. 31-59, 1983.
[28] D. B. Lenat, "EURISKO: A program that learns new heuristics and domain concepts: The nature of heuristics III: Program design and results,"Artif. Intell., vol. 21, pp. 61-98, 1983.
[29] Z. Manna and R. J. Waldinger, "Knowledge and reasoning in program synthesis,"Artif. Intell., vol. 6, pp. 175-208, 1975.
[30] D. McDermott, "Planning and acting,"Cognitive Sci., vol. 2, pp. 71-109, 1978.
[31] J. McDermott, "Learning to use analogies," inProc. IJCAI, 1979, pp. 568-576.
[32] R. S. Michalski, "A theory and methodology of inductive learning," inMachine Learning, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Palo Alto, CA: Tioga, 1983.
[33] R. S. Michalski, "Understanding the nature of learning: Issues and research directions," inMachine Learning: An Artificial Intelligence Approach, vol. II, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds. Los Altos, CA: Morgan Kaufmann, 1986.
[34] M. Minsky, "A framework for representing knowledge," inThe Psychology of Computer Vision, P. H. Winston, Ed. New York: McGraw-Hill, 1975.
[35] S. Minton, "Constraint-based generalization: Learning game-playing plans from single examples," inProc. Nat. Conf. Artif. Intell., AAAI, Austin, TX, 1984, pp. 251-254.
[36] T. M. Mitchell, "Generalization as search,"Artif. Intell., vol. 18, pp. 203-226, 1982.
[37] J. A. Moore and A. Newell, "How can MERLIN understand?" inKnowledge and Cognition, L. Gregg, Ed. Hillsdale, CA: Erlbaum, 1973.
[38] D. J. Mostow and F. Hayes-Roth, "Operationalizing heuristics: Some AI methods for assisting AI programming," inProc. IJCAI, 1979, pp. 601-609.
[39] N. Nilsson,Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.
[40] S. Ohlsson, "A constrained mechanism lot procedural learning," inProc. Int. Joint Conf. Artif. Intell.Los Altos, CA: William Kaufman, 1983, pp. 426-428.
[41] J. A. Robinson, "A machined-oriented logic based on the resolution principle,"J. Assoc. Comput. Mach., vol. 12, no. 1, pp. 23-41, Jan. 1965.
[42] A. L. Samuel, "Some studies in machine learning using the game of checkers,"IBM J. Res. Develop., vol. 3, pp. 210-229, 1959.
[43] A. L. Samuel, "Some studies in machine learning using the game of checkers II--Recent progress,"J. Res. Develop., vol. II, no. 6, pp. 601-617, 1967.
[44] S. A. Vere,Inductive Learning of Relational Productions Pattern-Directed Inference Systems. New York: Academic, 1978.
[45] B. W. Wah and C. F. Yu, "Stochastic modeling of branch-and-bound algorithms with best-first search,"IEEE Trans. Software Eng., vol. SE-11, no. 9, pp. 922-934, Sept. 1985.
[46] D. A. Waterman, "Generalization learning techniques for automating the learning of heuristics,"Artif. Intell., vol. 1, no. 1/2, pp. 121- 170, 1970.
[47] P. H. Winston, "Learning structural descriptions from examples," inThe Psychology of Comptuer Vision, P. H. Winston, Ed. New York: McGraw-Hill, 1975.
[48] P. H. Winston, "Learning and reasoning by analogy,"Commun. ACM, vol. 23, pp. 869-703, 1979.
[49] P. M. Winston,Artificial Intelligence. Reading, MA: Addison-Wesley, 1984.
[50] L. Wos, G. A. Robinson, and D. F. Carson, "Efficiency and completeness of the set of support strategy in theorem proving,"J. ACM, vol. 12, pp. 536-541, 1965.
[51] L. Wos, R. Overbeek, E. Lusk, and J. Boyle,Automated Reasoning: Introduction and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1974.
[52] C.-F. Yu, "Efficient combinatorial search algorithms," Ph.D. disertation, School Elec. Eng., Purdue Univ., West Lafayette, IN, Dec. 1986.
[53] M. B. Lowrie and B. W. Wah, "Learning heuristic functions for numeric optimization problems," inProc. Computer Software and Applications Conf., IEEE, Chicago, IL, Oct. 1988.
[54] G. DeJong and R. Mooney, "Explanation based learning: An alternative views,"Machine Learning, vol. 1, no. 2, pp. 145-176, 1986.
[55] T. M. Mitchell, R. H. Keller, and S. T. Kedar-Cabelli, "Explanation-based generalization: A unifying view,"Machine Learning, vol. 1, no. 1, pp. 47-80, 1986.

Index Terms:
artificial intelligence; optimisation; dominance relations; combined search problems; search graphs; machine learning; 0/1-knapsack problem; inventory problem; reliability-by-replication; two-machine flow shop problem; single-machine scheduling; two-machine scheduling; artificial intelligence; combinatorial mathematics; learning systems; optimisation; scheduling
Citation:
C.-F. Yu, B.W. Wah, "Learning Dominance Relations in Combined Search Problems," IEEE Transactions on Software Engineering, vol. 14, no. 8, pp. 1155-1175, Aug. 1988, doi:10.1109/32.7626
Usage of this product signifies your acceptance of the Terms of Use.