This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
October 1985 (vol. 11 no. 10)
pp. 1081-1091
N.C. Rowe, Department of Computer Science
We survey a new way to get quick estimates of the values of simple statistks (like count, mean, standard deviation, maximum, median, and mode frequency) on a large data set. This approach is a comprehensive attempt (apparently the first) to estimate statistics without any sampling. Our "antisampling" techniques have analogies to those of sampling, and exhibit similar estimation accuracy, but can be done much faster than sampling with large computer databases. Antisampling exploits computer science ideas from database theory and expert systems, building an auxiliary structure called a "database abstract." We make detailed comparisons to several different kinds of sampling.
Index Terms:
statistical databases, Estimation, expert systems, inequalities, parametric optimization, query processing, sampling, statistical computing
Citation:
N.C. Rowe, "Antisampling for Estimation: An Overview," IEEE Transactions on Software Engineering, vol. 11, no. 10, pp. 1081-1091, Oct. 1985, doi:10.1109/TSE.1985.231855
Usage of this product signifies your acceptance of the Terms of Use.