
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Haibing Lu, Yingjiu Li, "Practical Inference Control for Data Cubes," IEEE Transactions on Dependable and Secure Computing, vol. 5, no. 2, pp. 8798, AprilJune, 2008.  
BibTex  x  
@article{ 10.1109/TDSC.2007.70217, author = {Haibing Lu and Yingjiu Li}, title = {Practical Inference Control for Data Cubes}, journal ={IEEE Transactions on Dependable and Secure Computing}, volume = {5}, number = {2}, issn = {15455971}, year = {2008}, pages = {8798}, doi = {http://doi.ieeecomputersociety.org/10.1109/TDSC.2007.70217}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Dependable and Secure Computing TI  Practical Inference Control for Data Cubes IS  2 SN  15455971 SP87 EP98 EPD  8798 A1  Haibing Lu, A1  Yingjiu Li, PY  2008 KW  Inference engines KW  Data dependencies VL  5 JA  IEEE Transactions on Dependable and Secure Computing ER   
[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh, “Data Cube: A Relational Aggregation Operator Generalizing GroupBy, CrossTab, and SubTotals,” Data Mining and Knowledge Discovery, vol. 1, no. 1, pp.2953, 1997.
[2] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP Technology,” SIGMOD Record, vol. 26, no. 1, pp. 6574, 1997.
[3] G. Dong, J. Han, J.M.W. Lam, J. Pei, and K. Wang, “Mining MultiDimensional Constrained Gradients in Data Cubes,” Proc. 27th Int'l Conf. Very Large Data Bases, pp. 321330, 2001.
[4] D.E. Denning, Cryptography and Data Security. AddisonWesley, 1982.
[5] E. Bertino and R. Sandhu, “Database Security: Concepts, Approaches, and Challenges,” IEEE Trans. Dependable and Secure Computing, vol. 2, no. 1, pp. 219, Jan.Mar. 2005.
[6] A. Dobra and S.E. Fienberg, “Bounds for Cell Entries in Contingency Tables Induced by Fixed Marginal Totals with Applications to Disclosure Limitation,” Statistical J. United States, vol. 18, pp. 363371, 2001.
[7] M. Fréchet, Les Probabilities, Associées a un Système d'Événments Compatibles et Dépendants, vol. Premiere Partie, Hermann & Cie, 1940.
[8] Y. Li, H. Lu, and R.H. Deng, “Practical Inference Control for Data Cubes (extended abstract),” Proc. IEEE Symp. Security and Privacy, pp. 115120, 2006.
[9] J.P. Ignizio and T.M. Cavalier, Linear Programming. Prentice Hall, 1994.
[10] A. Dobra, A. Karr, and A. Sanil, “Preserving Confidentiality of HighDimensional Tabulated Data: Statistical and Computational Issues,” Statistics and Computing, vol. 13, pp. 363370, 2003.
[11] L. Cox, “On Properties of MultiDimensional Statistical Tables,” J.Statistical Planning and Inference, vol. 117, no. 2, pp. 251273, 2003.
[12] L. Cox, “Bounding Entries in 3Dimensional Contingency Tables,” Inference Control in Statistical Databases: From Theory to Practice. Springer, pp. 2133, 2002.
[13] S. Fienberg, “Fréchet and Bonferroni Bounds for MultiWay Tables of Counts with Applications to Disclosure Limitation,” Proc. Conf. Statistical Data Protection, pp. 115129, 1999.
[14] S. Chowdhury, G. Duncan, R. Krishnan, S. Roehrig, and S. Mukherjee, “Disclosure Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection through Two New Matrix Operators,” Management Sciences, vol. 45, pp. 17101723, 1999.
[15] L. Buzzigoli and A. Giusti, “An Algorithm to Calculate the Lower and Upper Bounds of the Elements of an Array Given Its Marginals,” Proc. Conf. Statistical Data Protection, pp. 131147, 1999.
[16] A. Dobra and S.E. Fienberg, “Bounds for Cell Entries in Contingency Tables Given Fixed Marginal Totals and Decomposable Graphs,” Proc. Nat'l Academy of Sciences, vol. 97, no. 22, pp.1188511892, 2000.
[17] L. Wang, S. Jajodia, and D. Wijesekera, “Securing OLAP Data Cubes against Privacy Breaches,” Proc. IEEE Symp. Security and Privacy, pp. 161175, 2004.
[18] B.K. Bhargava, “Security in Data Warehousing (Invited Talk),” Proc. Second Data Warehousing and Knowledge Discovery, pp. 287289, 2000.
[19] L. Brankovic, P. Norak, M. Miller, and G. Wrightson, “Usability of CompromiseFree Statistical Databases,” Proc. Ninth Int'l Conf. Scientific and Statistical Database Management, pp. 144154, 1997.
[20] L. Wang, D. Wijesekera, and S. Jajodia, “CardinalityBased Inference Control in SumOnly Data Cubes,” Proc. Seventh European Symp. Research in Computer Security, pp. 5571, 2002.
[21] L. Wang, Y. Li, D. Wijesekera, and S. Jajodia, “Precisely Answering MultiDimensional Range Queries without Privacy Breaches,” Proc. Eighth European Symp. Research in Computer Security, pp. 100115, 2003.
[22] N.R. Adam and J.C. Wortmann, “SecurityControl Methods for Statistical Databases: A Comparative Study,” ACM Computing Surveys, vol. 21, no. 4, pp. 515556, 1989.
[23] L. Willenborg and T. de Walal, Statistical Disclosure Control in Practice. Springer, 1996.
[24] J. DomingoFerrer, “Advances in Inference Control in Statistical Databases: An Overview,” Inference Control in Statistical Databases: From Theory to Practice, pp. 17, 2002.
[25] J.F. Traub, Y. Yemini, and H. Wozniakowski, “The Statistical Security of a Statistical Database,” ACM Trans. Database Systems, vol. 9, no. 4, pp. 672679, 1984.
[26] Y. Li, L. Wang, and S. Jajodia, “Preventing IntervalBased Inference by Random Data Perturbation,” Privacy Enhancing Technologies, pp. 160170, 2002.
[27] D. Agrawal and C.C. Aggarwal, “On the Design and Quantification of Privacy Preserving Data Mining Algorithms,” Proc. 20th ACM SIGACTSigmodSIGART Symp. Principles of Database Systems, 2001.
[28] K. Muralidhar and R. Sarathy, “A General Additive Data Perturbation Method for Database Security,” Management Sciences, vol. 45, pp. 13991415, 1999.
[29] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “On the Privacy Preserving Properties of Random Data Perturbation Techniques,” Proc. Third IEEE Int'l Conf. Data Mining, pp. 99106, 2003.
[30] Z. Huang, W. Du, and B. Chen, “Deriving Private Information from Randomized Data,” Proc. ACM SIGMOD '05, pp. 3748, 2005.
[31] L.L. Beck, “A Security Mechanism for Statistical Databases,” ACM Trans. Database Systems, vol. 5, no. 3, pp. 316338, 1980.
[32] J. Schlörer, “Security of Statistical Databases: Multidimensional Transformation,” ACM Trans. Database Systems, vol. 6, no. 1, pp.95112, 1981.
[33] P. Samarati and L. Sweeney, “Protecting Privacy When Disclosing Information: kAnonymity and Its Enforcement through Generalization and Suppression,” technical report, SRI Int'l, 1998.
[34] L. Sweeney, “Achieving kAnonymity Privacy Protection Using Generalization and Suppression,” Int'l J. Uncertainty, Fuzziness and KnowledgeBased Systems, vol. 10, no. 5, pp. 571588, 2002.
[35] F.Y.L. Chin and G. Özsoyoglu, “Statistical Database Design,” ACM Trans. Database Systems, vol. 6, no. 1, pp. 113139, 1981.
[36] J. Schlörer, “Information Loss in Partitioned Statistical Databases,” Computer J., vol. 26, no. 3, pp. 218223, 1983.
[37] J. DomingoFerrer and J.M. MateoSanz, “Practical DataOriented Microaggregation for Statistical Disclosure Control,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 1, pp. 189201, Jan. 2002.
[38] L.H. Cox, “Suppression Methodology and Statistical Disclosure Control,” J. Am. Statistical Assoc., vol. 75, no. 370, pp. 377385, 1980.
[39] M. Fischetti and J.J. Salazar, “Solving the Cell Suppression Problem on Tabular Data with Linear Constraints,” Management Sciences, vol. 47, pp. 10081026, 2000.
[40] M. Fischetti and J.J. Salazar, “Partial Cell Suppression: A New Methodology for Statistical Disclosure Control,” Statistics and Computing, vol. 13, pp. 1321, 2003.