The Community for Technology Leaders
RSS Icon
Subscribe
pp: 1
Satoshi Ikehata , S. Ikehata is with University of Tokyo.
ABSTRACT
Most conventional algorithms for non-Lambertian photometric stereo can be partitioned into two categories. The first category is built upon stable outlier rejection techniques while assuming a dense Lambertian structure for the inliers, and thus performance degrades when general diffuse regions are present. The second utilizes complex reflectance representations and nonlinear optimization over pixels to handle non-Lambertian surfaces, but does not explicitly account for shadows or other forms of corrupting outliers. In this paper, we present a purely pixel-wise photometric stereo method that stably and efficiently handles various non-Lambertian effects by assuming that appearances can be decomposed into a sparse, non-diffuse component (e.g., shadows, specularities, etc.) and a diffuse component represented by a monotonic function of the surface normal and lighting dot-product. This function is constructed using a piecewise linear approximation to the inverse diffuse model, leading to closed-form estimates of the surface normals and model parameters in the absence of non-diffuse corruptions. The latter are modeled as latent variables embedded within a hierarchical Bayesian model such that we may accurately compute the unknown surface normals while simultaneously separating diffuse from non-diffuse components. Extensive evaluations are performed that show state-of-the-art performance using both synthetic and real-world images.
CITATION
Satoshi Ikehata, "Photometric Stereo using Sparse Bayesian Regression for General Diffuse Surfaces", IEEE Transactions on Pattern Analysis & Machine Intelligence, , no. 1, pp. 1, PrePrints PrePrints, doi:10.1109/TPAMI.2014.2299798
22 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool