The Community for Technology Leaders
RSS Icon
Subscribe
pp: 1
Brian C. Franczak , University of Guelph, Guelph
Ryan P. Browne , University of Guelph, Guelph
Paul D. McNicholas , University of Guelph, Guelph
ABSTRACT
A mixture of shifted asymmetric Laplace distributions is introduced and used for clustering and classification. A variant of the EM algorithm is developed for parameter estimation by exploiting the relationship with the generalized inverse Gaussian distribution. This approach is mathematically elegant and relatively computationally straightforward. Our novel mixture modelling approach is demonstrated on both simulated and real data to illustrate clustering and classification applications. In these analyses, our mixture of shifted asymmetric Laplace distributions performs favourably when compared to the popular Gaussian approach. This work, which marks an important step in the non-Gaussian model-based clustering and classification direction, concludes with discussion as well as suggestions for future work.
INDEX TERMS
Statistical computing, Multivariate statistics
CITATION
Brian C. Franczak, Ryan P. Browne, Paul D. McNicholas, "Mixtures of Shifted Asymmetric Laplace Distributions", IEEE Transactions on Pattern Analysis & Machine Intelligence, , no. 1, pp. 1, PrePrints PrePrints, doi:10.1109/TPAMI.2013.216
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool