This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Geodesic Mapping for Dynamic Surface Alignment
PrePrint
ISSN: 0162-8828
Tony Tung, Kyoto University, Kyoto
Takashi Matsuyama, Kyoto University, Kyoto
This paper presents a novel approach that achieves dynamic surface alignment by geodesing mapping. The surfaces are 3D manifold meshes representing non-rigid objects in motion (e.g., humans) which can be obtained by multiview stereo reconstruction. The proposed framework consists of a geodesic mapping (i.e., geodesic diffeomorphism) between surfaces which carry a distance function (namely the global geodesic distance), and a geodesic-based coordinate system (namely the global geodesic coordinates) defined similarly to generalized barycentric coordinates. The coordinates are used to recursively choose correspondence points in non-ambiguous regions using a coarse-to-fine strategy to reliably locate all surface points and define a discrete mapping. Complete point-to- point surface alignment with smooth mapping is then derived by optimizing a piecewise objective function within a probabilistic framework. The proposed technique only relies on surface intrinsic geometrical properties, and does not require prior knowledge on surface appearance (e.g., color or texture), shape (e.g., topology) or parameterization (e.g., mesh connectivity or complexity). The method can be used for numerous applications, such as visual information (e.g., texture) transfer between surface models representing different objects, dense motion flow estimation of 3D dynamic surfaces, wide-timeframe matching, etc. Experiments show compelling results on challenging publicly available real-world datasets.
Index Terms:
Surface reconstruction,Three-dimensional displays,Surface treatment,Surface texture,Shape,Topology,Robustness,MRF,Geodesic mapping,non-rigid surface alignment,dynamic surface,multiple view stereo
Citation:
Tony Tung, Takashi Matsuyama, "Geodesic Mapping for Dynamic Surface Alignment," IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 Nov. 2013. IEEE computer Society Digital Library. IEEE Computer Society, <http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.179>
Usage of this product signifies your acceptance of the Terms of Use.