The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.08 - Aug. (2014 vol.36)
pp: 1546-1558
Amir Roshan Zamir , Center for Research in Computer Vision, University of Central Florida, 4000 Central Florida Blvd., Harris Corporation Engineering Center, Orlando,
Mubarak Shah , Center for Research in Computer Vision, University of Central Florida, 4000 Central Florida Blvd., Harris Corporation Engineering Center, Orlando,
ABSTRACT
In this paper, we present a new framework for geo-locating an image utilizing a novel multiple nearest neighbor feature matching method using Generalized Minimum Clique Graphs (GMCP). First, we extract local features (e.g., SIFT) from the query image and retrieve a number of nearest neighbors for each query feature from the reference data set. Next, we apply our GMCP-based feature matching to select a single nearest neighbor for each query feature such that all matches are globally consistent. Our approach to feature matching is based on the proposition that the first nearest neighbors are not necessarily the best choices for finding correspondences in image matching. Therefore, the proposed method considers multiple reference nearest neighbors as potential matches and selects the correct ones by enforcing consistency among their global features (e.g., GIST) using GMCP. In this context, we argue that using a robust distance function for finding the similarity between the global features is essential for the cases where the query matches multiple reference images with dissimilar global features. Towards this end, we propose a robust distance function based on the Gaussian Radial Basis Function (G-RBF). We evaluated the proposed framework on a new data set of 102k street view images; the experiments show it outperforms the state of the art by 10 percent.
INDEX TERMS
Feature extraction, Image color analysis, Image edge detection, Context, Robustness, Equations, Visualization,generalized graphs, Geo-location, image localization, Generalized Minimum Clique Problem (GMCP), generalized minimum spanning tree (GMST), feature matching, multiple nearest neighbor feature matching, feature correspondence
CITATION
Amir Roshan Zamir, Mubarak Shah, "Image Geo-Localization Based on MultipleNearest Neighbor Feature Matching UsingGeneralized Graphs", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.36, no. 8, pp. 1546-1558, Aug. 2014, doi:10.1109/TPAMI.2014.2299799
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool