This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Scene Particles: Unregularized Particle-Based Scene Flow Estimation
March 2014 (vol. 36 no. 3)
pp. 564-576
Simon Hadfield, Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
Richard Bowden, Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
In this paper, an algorithm is presented for estimating scene flow, which is a richer, 3D analog of optical flow. The approach operates orders of magnitude faster than alternative techniques and is well suited to further performance gains through parallelized implementation. The algorithm employs multiple hypotheses to deal with motion ambiguities, rather than the traditional smoothness constraints, removing oversmoothing errors and providing significant performance improvements on benchmark data, over the previous state of the art. The approach is flexible and capable of operating with any combination of appearance and/or depth sensors, in any setup, simultaneously estimating the structure and motion if necessary. Additionally, the algorithm propagates information over time to resolve ambiguities, rather than performing an isolated estimation at each frame, as in contemporary approaches. Approaches to smoothing the motion field without sacrificing the benefits of multiple hypotheses are explored, and a probabilistic approach to occlusion estimation is demonstrated, leading to 10 and 15 percent improved performance, respectively. Finally, a data-driven tracking approach is described, and used to estimate the 3D trajectories of hands during sign language, without the need to model complex appearance variations at each viewpoint.
Index Terms:
Estimation,Smoothing methods,Equations,Sociology,Statistics,Optical sensors,motion segmentation,Scene flow,scene particles,motion estimation,3D,3D motion,particle,particle filter,optical flow,hand tracking,sign language,tracking,occlusion estimation,probabilistic occlusion,occlusion,bilateral filter,3D tracking
Citation:
Simon Hadfield, Richard Bowden, "Scene Particles: Unregularized Particle-Based Scene Flow Estimation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 564-576, March 2014, doi:10.1109/TPAMI.2013.162
Usage of this product signifies your acceptance of the Terms of Use.