This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Joint Albedo Estimation and Pose Tracking from Video
July 2013 (vol. 35 no. 7)
pp. 1674-1689
S. Taheri, Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA
A. C. Sankaranarayanan, Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA
R. Chellappa, Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA
The albedo of a Lambertian object is a surface property that contributes to an object's appearance under changing illumination. As a signature independent of illumination, the albedo is useful for object recognition. Single image-based albedo estimation algorithms suffer due to shadows and non-Lambertian effects of the image. In this paper, we propose a sequential algorithm to estimate the albedo from a sequence of images of a known 3D object in varying poses and illumination conditions. We first show that by knowing/estimating the pose of the object at each frame of a sequence, the object's albedo can be efficiently estimated using a Kalman filter. We then extend this for the case of unknown pose by simultaneously tracking the pose as well as updating the albedo through a Rao-Blackwellized particle filter (RBPF). More specifically, the albedo is marginalized from the posterior distribution and estimated analytically using the Kalman filter, while the pose parameters are estimated using importance sampling and by minimizing the projection error of the face onto its spherical harmonic subspace, which results in an illumination-insensitive pose tracking algorithm. Illustrations and experiments are provided to validate the effectiveness of the approach using various synthetic and real sequences followed by applications to unconstrained, video-based face recognition.
Index Terms:
Face,Lighting,Estimation,Shape,Harmonic analysis,Kalman filters,Solid modeling,intrinsic image statistics,Albedo,pose tracking,spherical harmonics,sequential algorithm,Kalman filter,Rao-Blackwellized particle filter
Citation:
S. Taheri, A. C. Sankaranarayanan, R. Chellappa, "Joint Albedo Estimation and Pose Tracking from Video," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1674-1689, July 2013, doi:10.1109/TPAMI.2012.249
Usage of this product signifies your acceptance of the Terms of Use.