This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Locally Orderless Registration
June 2013 (vol. 35 no. 6)
pp. 1437-1450
Sune Darkner, University of Copenhagen, Copenhagen
Jon Sporring, University of Copenhagen, Copenhagen
This paper presents a unifying approach for calculating a wide range of popular, but seemingly very different, similarity measures. Our domain is the registration of n-dimensional images sampled on a regular grid, and our approach is well suited for gradient-based optimization algorithms. Our approach is based on local intensity histograms and built upon the technique of Locally Orderless Images. Histograms by Locally Orderless Images are well posed and offer explicit control over the three inherent and unavoidable scales: the spatial resolution, intensity levels, and spatial extent of local histograms. Through Locally Orderless Images, we offer new insight into the relations between these scales. We demonstrate our unification by developing a Locally Orderless Registration algorithm for two quite different similarity measures, namely, Normalized Mutual Information and Sum of Squared Differences, and we compare these variations both theoretically and empirically. Finally, using our algorithm, we explain the empirically observed differences between two popular joint density estimation techniques used in registration: Parzen Windows and Generalized Partial Volume.
Index Terms:
Histograms,Kernel,Loss measurement,Image registration,Joints,Estimation,Convolution,Locally Orderless Images,Similarity measure,registration,Normalized Mutual Information,Sum of Squared Differences,density estimation,local histogram,scale space
Citation:
Sune Darkner, Jon Sporring, "Locally Orderless Registration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1437-1450, June 2013, doi:10.1109/TPAMI.2012.238
Usage of this product signifies your acceptance of the Terms of Use.