This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Multi-Atlas Segmentation with Joint Label Fusion
March 2013 (vol. 35 no. 3)
pp. 611-623
Hongzhi Wang, Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, PA, USA
J. W. Suh, HeartFlow, Inc., Redwood City, CA, USA
S. R. Das, Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, PA, USA
J. B. Pluta, Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, PA, USA
C. Craige, Sch. of Med., Temple Univ., Temple, TX, USA
P. A. Yushkevich, Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, PA, USA
Multi-atlas segmentation is an effective approach for automatically labeling objects of interest in biomedical images. In this approach, multiple expert-segmented example images, called atlases, are registered to a target image, and deformed atlas segmentations are combined using label fusion. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity have been particularly successful. However, one limitation of these strategies is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this limitation, we propose a new solution for the label fusion problem in which weighted voting is formulated in terms of minimizing the total expectation of labeling error and in which pairwise dependency between atlases is explicitly modeled as the joint probability of two atlases making a segmentation error at a voxel. This probability is approximated using intensity similarity between a pair of atlases and the target image in the neighborhood of each voxel. We validate our method in two medical image segmentation problems: hippocampus segmentation and hippocampus subfield segmentation in magnetic resonance (MR) images. For both problems, we show consistent and significant improvement over label fusion strategies that assign atlas weights independently.
Index Terms:
Image segmentation,Educational institutions,Biomedical imaging,Joints,Indexes,Accuracy,Radiology,hippocampal segmentation,Multi-atlas label fusion segmentation,dependence
Citation:
Hongzhi Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, P. A. Yushkevich, "Multi-Atlas Segmentation with Joint Label Fusion," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 3, pp. 611-623, March 2013, doi:10.1109/TPAMI.2012.143
Usage of this product signifies your acceptance of the Terms of Use.