This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Visual-Attention Model Using Earth Mover's Distance-Based Saliency Measurement and Nonlinear Feature Combination
Feb. 2013 (vol. 35 no. 2)
pp. 314-328
Yuewei Lin, Dept. of Comput. Sci. & Eng., Univ. of South Carolina, Columbia, SC, USA
Yuan Yan Tang, Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China
Bin Fang, Coll. of Comput. Sci., Chongqing Univ., Chongqing, China
Zhaowei Shang, Coll. of Comput. Sci., Chongqing Univ., Chongqing, China
Yonghui Huang, Coll. of Comput. Sci., Chongqing Univ., Chongqing, China
Song Wang, Dept. of Comput. Sci. & Eng., Univ. of South Carolina, Columbia, SC, USA
This paper introduces a new computational visual-attention model for static and dynamic saliency maps. First, we use the Earth Mover's Distance (EMD) to measure the center-surround difference in the receptive field, instead of using the Difference-of-Gaussian filter that is widely used in many previous visual-attention models. Second, we propose to take two steps of biologically inspired nonlinear operations for combining different features: combining subsets of basic features into a set of super features using the Lm-norm and then combining the super features using the Winner-Take-All mechanism. Third, we extend the proposed model to construct dynamic saliency maps from videos by using EMD for computing the center-surround difference in the spatiotemporal receptive field. We evaluate the performance of the proposed model on both static image data and video data. Comparison results show that the proposed model outperforms several existing models under a unified evaluation setting.
Index Terms:
video signal processing,computer vision,feature extraction,video data,nonlinear feature combination,computational visual-attention model,static saliency map,dynamic saliency map,earth mover's distance-based saliency measurement,center-surround difference measurement,Difference-of-Gaussian filter,biologically inspired nonlinear operation,super features,winner-take-all mechanism,spatiotemporal receptive field,static image data,Computational modeling,Visualization,Histograms,Biological system modeling,Educational institutions,Humans,Earth,spatiotemporal receptive field (STRF),Visual attention,saliency maps,dynamic saliency maps,earth mover's distance (EMD)
Citation:
Yuewei Lin, Yuan Yan Tang, Bin Fang, Zhaowei Shang, Yonghui Huang, Song Wang, "A Visual-Attention Model Using Earth Mover's Distance-Based Saliency Measurement and Nonlinear Feature Combination," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 314-328, Feb. 2013, doi:10.1109/TPAMI.2012.119
Usage of this product signifies your acceptance of the Terms of Use.