
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
J. Gallier, X. S. Zhou, O. Naroditsky, S. I. Roumeliotis, K. Daniilidis, "Two Efficient Solutions for Visual Odometry Using Directional Correspondence," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 818824, April, 2012.  
BibTex  x  
@article{ 10.1109/TPAMI.2011.226, author = {J. Gallier and X. S. Zhou and O. Naroditsky and S. I. Roumeliotis and K. Daniilidis}, title = {Two Efficient Solutions for Visual Odometry Using Directional Correspondence}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {34}, number = {4}, issn = {01628828}, year = {2012}, pages = {818824}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.226}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Two Efficient Solutions for Visual Odometry Using Directional Correspondence IS  4 SN  01628828 SP818 EP824 EPD  818824 A1  J. Gallier, A1  X. S. Zhou, A1  O. Naroditsky, A1  S. I. Roumeliotis, A1  K. Daniilidis, PY  2012 KW  vectors KW  computer vision KW  distance measurement KW  geometry KW  pose estimation KW  fivepoint method KW  visual odometry KW  directional correspondence KW  relative pose problem KW  image point correspondences KW  reference direction KW  threeplusone problem KW  fivepoint algorithm KW  vanishing point KW  inertial measurement unit KW  robots KW  mobile devices KW  gravity vector KW  algebraic geometry KW  RANSAC KW  four point correspondences KW  Polynomials KW  Cameras KW  Noise KW  Vectors KW  Visualization KW  Sparse matrices KW  Groebner basis. KW  Computer vision KW  structure from motion KW  visual odometry KW  minimal problems VL  34 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] D. Nister, O. Naroditsky, and J. Bergen, "Visual Odometry," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, vol. 1, pp. I652I659, Jan. 2004.
[2] M. Byrod, K. Josephson, and K. Åström, "Fast and Stable Polynomial Equation Solving and Its Application to Computer Vision," Int'l J. Computer Vision, vol. 84, pp. 237256, Jan. 2009.
[3] D. Nister, "An Efficient Solution to the FivePoint Relative Pose Problem," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756770, June 2004.
[4] Z. Kukelova and T. Pajdla, "A Minimal Solution to the Autocalibration of Radial Distortion," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007.
[5] M. Byrod, Z. Kukelova, K. Josephson, and T. Pajdla, "Fast and Robust Numerical Solutions to Minimal Problems for Cameras with Radial Distortion," Proc. IEEE Conf. Computer Vision and Pattern Recognition, Jan. 2008.
[6] M. Bujnak, Z. Kukelova, and T. Pajdla, "A General Solution to the p4p Problem For Camera with Unknown Focal Length," Proc. IEEE Conf. Computer Vision and Pattern Recognition, Jan. 2008.
[7] H. Stewenius, C. Engels, and D. Nister, "An Efficient Minimal Solution for Infinitesimal Camera Motion," Proc. IEEE Conf. Computer Vision and Pattern Recognition, Jan. 2007.
[8] H. Stewenius, "Gröbner Basis Methods for Minimal Problems in Computer Vision," maths.lth.se, Jan. 2005.
[9] M. Byrod, K. Josephson, and K. Astrom, "Improving Numerical Accuracy of Grobner Basis Polynomial Equation Solver," Proc. 11th IEEE Int'l Conf. Computer Vision, 2007.
[10] H. Stewenius, F. Schaffalitzky, and D. Nister, "How Hard Is 3View Triangulation Really?," Proc. 10th IEEE Int'l Conf. Computer Vision, Jan. 2005.
[11] M. Byrod, K. Josephson, and K. Astrom, "Fast Optimal Three View Triangulation," Proc. Asian Conf. Computer Vision, Jan. 2007.
[12] T. Vieville, E. Clergue, and P. Facao, "Computation of EgoMotion and Structure from Visual and Inertialsensors Using the Vertical Cue," Proc. Fourth IEEE Int'l Conf. Computer Vision, pp. 591598, 1993.
[13] M. Kalantari, A. Hashemi, F. Jung, and J. Guedon, "A New Solution to the Relative Orientation Problem Using Only 3 Points and the Vertical Direction," arXiv, vol. cs.CV, May 2009.
[14] M. Kalantari, A. Hashemi, F. Jung, and J. Guedon, "A New Solution to the Relative Orientation Problem Using Only 3 Points and the Vertical Direction," J. Math. Imaging Vision, vol. 39, no. 3, pp. 259268, 2011.
[15] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, "A Minimal Case Solution to the Calibrated Relative Pose Problem for the Case of Two Known Orientation Angles," Proc. 11th European Conf. Computer Vision, pp. 269282, 2010.
[16] J. Lobo and J. Dias, "Vision and Inertial Sensor Cooperation Using Gravity as a Vertical Reference," IEEE Trans. Pattern and Machine Intelligence, vol. 25, no. 12, pp. 15971608, Dec. 2003.
[17] D. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms. Springer, Jan. 1997.
[18] Z. Kukelova, M. Bujnak, and T. Pajdla, "Automatic Generator of Minimal Problem Solvers," Proc. 10th European Conf. Computer Vision, Jan. 2008.
[19] D. Cox, J. Little, and D. O'Shea, Using Algebraic Geometry. Springer, Jan. 2005.
[20] O. Naroditsky and K. Daniilidis, "Optimizing Polynomial Solvers for Minimal Geometry Problems," Proc. IEEE Int'l Conf. Computer Vision, 2011.
[21] M. Armstrong, A. Zisserman, and R. Hartley, "SelfCalibration from Image Triplets," Proc. Fourth European Conf. Computer Vision, pp. 116, 1996.
[22] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge Univ. Press, 2004.
[23] M. Fischler and R. Bolles, "Random Sample Consensus," Comm. ACM, vol. 24, pp. 381395, Jan. 1981.
[24] O. Naroditsky, X. Zhou, J. Gallier, S. Roumeliotis, and K. Daniilidis, "Structure from Motion with Directional Correspondence for Visual Odometry," MSCIS1115, Univ. of Pennsylvania, Philadelphia, 2011.