
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
F. Bach, J. Mairal, J. Ponce, "TaskDriven Dictionary Learning," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 791804, April, 2012.  
BibTex  x  
@article{ 10.1109/TPAMI.2011.156, author = {F. Bach and J. Mairal and J. Ponce}, title = {TaskDriven Dictionary Learning}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {34}, number = {4}, issn = {01628828}, year = {2012}, pages = {791804}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.156}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  TaskDriven Dictionary Learning IS  4 SN  01628828 SP791 EP804 EPD  791804 A1  F. Bach, A1  J. Mairal, A1  J. Ponce, PY  2012 KW  regression analysis KW  compressed sensing KW  data models KW  handwritten character recognition KW  image classification KW  image representation KW  image restoration KW  learning (artificial intelligence) KW  matrix decomposition KW  regression tasks KW  taskdriven dictionary learning KW  data modeling KW  linear combinations KW  learned dictionary KW  machine learning KW  neuroscience KW  signal processing KW  natural images KW  sparse representations KW  restoration tasks KW  largescale matrix factorization problem KW  classical optimization tools KW  image classification KW  supervised dictionary learning KW  handwritten digit classification KW  digital art identification KW  nonlinear inverse image problems KW  compressed sensing KW  semisupervised classification KW  Dictionaries KW  Sparse matrices KW  Vectors KW  Sensors KW  Cost function KW  Machine learning KW  compressed sensing. KW  Basis pursuit KW  Lasso KW  dictionary learning KW  matrix factorization KW  semisupervised learning VL  34 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] S. Mallat, A Wavelet Tour of Signal Processing, second ed. Academic Press, Sept. 1999.
[2] M. Elad and M. Aharon, "Image Denoising via Sparse and Redundant Representations over Learned Dictionaries," IEEE Trans. Image Processing, vol. 54, no. 12, pp. 37363745, Dec. 2006.
[3] J. Mairal, M. Elad, and G. Sapiro, "Sparse Representation for Color Image Restoration," IEEE Trans. Image Processing, vol. 17, no. 1, pp. 5369, Jan. 2008.
[4] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "NonLocal Sparse Models for Image Restoration," Proc. IEEE Int'l Conf. Computer Vision, 2009.
[5] R. Grosse, R. Raina, H. Kwong, and A.Y. Ng, "ShiftInvariant Sparse Coding for Audio Classification," Proc. 23rd Conf. Uncertainty in Artificial Intelligence, 2007.
[6] M. Zibulevsky and B.A. Pearlmutter, "Blind Source Separation by Sparse Decomposition in a Signal Dictionary," Neural Computation, vol. 13, no. 4, pp. 863882, 2001.
[7] R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng, "SelfTaught Learning: Transfer Learning from Unlabeled Data," Proc. Int'l Conf. Machine Learning, 2007.
[8] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Discriminative Learned Dictionaries for Local Image Analysis," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2008.
[9] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Supervised Dictionary Learning," Proc. Advances in Neural Information Processing Systems, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds., vol. 21, pp. 10331040, 2009.
[10] D.M. Bradley and J.A. Bagnell, "Differentiable Sparse Coding," Proc. Advances in Neural Information Processing Systems, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds., vol. 21, pp. 113120, 2009.
[11] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, "Learning Invariant Features through Topographic Filter Maps," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.
[12] J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.
[13] S.S. Chen, D.L. Donoho, and M.A. Saunders, "Atomic Decomposition by Basis Pursuit," SIAM J. Scientific Computing, vol. 20, pp. 3361, 1999.
[14] B.A. Olshausen and D.J. Field, "Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?" Vision Research, vol. 37, pp. 33113325, 1997.
[15] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, "Robust Face Recognition via Sparse Representation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210227, Feb. 2009.
[16] M. DuarteCarvajalino and G. Sapiro, "Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization," IEEE Trans. Image Processing, vol. 18, no. 7, pp. 13951408, July 2009.
[17] K. Engan, S.O. Aase, and J.H. Husoy, "Frame Based Signal Compression Using Method of Optimal Directions (Mod)," Proc. IEEE Int'l Symp. Circuits and Systems, vol. 4, 1999.
[18] M. Aharon, M. Elad, and A.M. Bruckstein, "The KSVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representations," IEEE Trans. Signal Processing, vol. 54, no. 11, pp. 43114322, Nov. 2006.
[19] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online Learning for Matrix Factorization and Sparse Coding," J. Machine Learning Research, vol. 11, pp. 1960, 2010.
[20] D. Blei, A. Ng, and M. Jordan, "Latent Dirichlet Allocation," J. Machine Learning Research, vol. 3, pp. 9931022, Jan. 2003.
[21] A. Argyriou, T. Evgeniou, and M. Pontil, "Convex MultiTask Feature Learning," Machine Learning, vol. 73, no. 3, pp. 243272, 2008.
[22] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng, "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations," Proc. Int'l Conf. Machine Learning, 2009.
[23] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient Learning of Sparse Representations with an EnergyBased Model," Proc. Advances in Neural Information Processing Systems, B. Schölkopf, J. Platt and T. Hoffman, eds., vol. 19, pp. 11371144, 2007.
[24] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, "Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007.
[25] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.J. Huang, "A Tutorial on EnergyBased Learning," Predicting Structured Data, G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, eds., MIT Press, 2006.
[26] H. Larochelle and Y. Bengio, "Classification Using Discriminative Restricted Boltzmann Machines," Proc. Int'l Conf. Machine Learning, 2008.
[27] D. Blei and J. McAuliffe, "Supervised Topic Models," Proc. Advances in Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer, and S. Roweis, eds., vol. 20, pp. 121128, 2008.
[28] Y. LeCun, L. Bottou, G. Orr, and K. Muller, "Efficient Backprop," Neural Networks: Tricks of the Trade, G. Orr and K.R. Muller, eds., Springer, 1998.
[29] H. Zou and T. Hastie, "Regularization and Variable Selection via the Elastic Net," J. Royal Statistical Soc. Series B, vol. 67, no. 2, pp. 301320, 2005.
[30] R. Tibshirani, "Regression Shrinkage and Selection via the Lasso," J. Royal Statistical Soc. Series B, vol. 58, no. 1, pp. 267288, 1996.
[31] L. Bottou and O. Bousquet, "The TradeOffs of Large Scale Learning," Proc. Advances in Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer, and S. Roweis, eds., vol. 20, pp. 161168, 2008.
[32] J. ShaweTaylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.
[33] D.D. Lee and H.S. Seung, "Algorithms for NonNegative Matrix Factorization," Proc. Advances in Neural Information Processing Systems, pp. 556562, 2001.
[34] I. Daubechies, M. Defrise, and C.D. Mol, "An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint," Comm. Pure and Applied Math., vol. 57, pp. 14131457, 2004.
[35] E. Candes, "Compressive Sampling," Proc. Int'l Congress of Mathematicians, vol. 3, 2006.
[36] D.L. Donoho, "Compressed Sensing," IEEE Trans. Information Theory, vol. 52, no. 4, pp. 12891306, Apr. 2006.
[37] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, "SinglePixel Imaging via Compressive Sampling," IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 8391, Mar. 2008.
[38] Y. Weiss, H. Chang, and W. Freeman, "Learning Compressed Sensing," Proc. Snowbird Learning Workshop, 2007.
[39] M.W. Seeger, "Bayesian Inference and Optimal Design for the Sparse Linear Model," J. Machine Learning Research, vol. 9, pp. 759813, 2008.
[40] H.J. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications. Springer, 2003.
[41] L. Bottou, "Online Algorithms and Stochastic Approximations," Online Learning and Neural Networks, D. Saad, ed., Cambridge Univ. Press, 1998.
[42] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least Angle Regression," Annals of Statistics, vol. 32, no. 2, pp. 407499, 2004.
[43] N. Murata, "Statistical Study on OnLine Learning," OnLine Learning in Neural Networks, pp. 6392, Cambridge Univ. Press, 1999.
[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "GradientBased Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 22782324, Nov. 1998.
[45] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D. Jackel, "Handwritten Digit Recognition with a BackPropagation Network," Proc. Advances in Neural Information Processing Systems, D. Touretzky, ed., vol. 2, Morgan Kaufman, 1990.
[46] B. Haasdonk and D. Keysers, "Tangent Distance Kernels for Support Vector Machines," Proc. Int'l Conf. Pattern Recognition, 2002.
[47] R.W. Floyd and L. Steinberg, "An Adaptive Algorithm for Spatial Grey Scale," Proc. Soc. of Information Display, vol. 17, pp. 7577, 1976.
[48] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Inverse Halftoning by Pointwise ShapeAdaptive DCT Regularized Deconvolution," Proc. Int'l TICSP Workshop Spectral Methods Multirate Signal Processing, 2006.
[49] A. Foi, V. Katkovnik, K. Egiazarian, and J. Astola, "Inverse Halftoning Based on the Anisotropic lpaIci Deconvolution," Proc. Int'l TICSP Workshop Spectral Methods and Multirate Signal Processing, 2004.
[50] T.D. Kite, N. DameraVenkata, B.L. Evans, and A.C. Bovik, "A Fast, HighQuality Inverse Halftoning Algorithm for Error Diffused Halftones," IEEE Trans. Image Processing, vol. 9, no. 9, pp. 15831592, Sept. 2000.
[51] R. Neelamani, R. Nowak, and R. Baraniuk, "WInHD: WaveletBased Inverse Halftoning via Deconvolution," Rejecta Mathematica, vol. 1, no. 1, pp. 84103, 2009.
[52] S. Lyu, D.N. Rockmore, and H. Farid, "A Digital Technique for Art Authentication," Proc. Nat'l Academy of Sciences USA, vol. 101, no. 49, pp. 1700617010, 2004.
[53] C.R. Johnson, E.H. Hendriks, I.J. Berezhnoy, E. Brevdo, S.M. Hugues, I. Daubechies, J. Li, E. Postma, and J.Z. Want, "Image Processing for Artist Identification," IEEE Signal Processing Magazine, vol. 25, no. 4, pp. 3748, July 2008.
[54] J.M. Hugues, D.J. Graham, and D.N. Rockmore, "Quantification of Artistic Style through Sparse Coding Analysis in the Drawings of Pieter Bruegel the Elder," Proc. Nat'l Academy of Sciences USA, vol. 107, no. 4, pp. 12791283, 2009.
[55] Y.L. Boureau, F. Bach, Y. LeCun, and J. Ponce, "Learning Midlevel Features for Recognition," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2010.
[56] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A. Zisserman, "The PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results," 2006.
[57] J.J. Fuchs, "Recovery of Exact Sparse Representations in the Presence of Bounded Noise," IEEE Trans. Information Theory, vol. 51, no. 10, pp. 36013608, Oct. 2005.
[58] J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, 2006.