
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Ning Zhou, William K. Cheung, Guoping Qiu, Xiangyang Xue, "A Hybrid Probabilistic Model for Unified Collaborative and ContentBased Image Tagging," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 7, pp. 12811294, July, 2011.  
BibTex  x  
@article{ 10.1109/TPAMI.2010.204, author = {Ning Zhou and William K. Cheung and Guoping Qiu and Xiangyang Xue}, title = {A Hybrid Probabilistic Model for Unified Collaborative and ContentBased Image Tagging}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {33}, number = {7}, issn = {01628828}, year = {2011}, pages = {12811294}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.204}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  A Hybrid Probabilistic Model for Unified Collaborative and ContentBased Image Tagging IS  7 SN  01628828 SP1281 EP1294 EPD  12811294 A1  Ning Zhou, A1  William K. Cheung, A1  Guoping Qiu, A1  Xiangyang Xue, PY  2011 KW  Automatic image tagging KW  collaborative filtering KW  feature integration KW  nonnegative matrix factorization KW  kernel density estimation. VL  33 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] R. BaezaYates and B. RibeiroNeto, Modern Information Retrieval. Addison Wesley, May 1999.
[2] K. Barnard, P. Duygulu, D.A. Forsyth, N. de Freitas, D.M. Blei, and M.I. Jordan, “Matching Words and Pictures,” J. Machine Learning Research, vol. 3, pp. 11071135, 2003.
[3] K. Barnard and D.A. Forsyth, “Learning the Semantics of Words and Pictures,” Proc. IEEE Int'l Conf. Computer Vision, pp. 408415, 2001.
[4] J. Basilico and T. Hofmann, “Unifying Collaborative and ContentBased Filtering,” Proc. 21st Int'l Conf. Machine Learning, 2004.
[5] J.L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Comm. ACM, vol. 18, pp. 509517, Sept. 1975.
[6] D.M. Blei and M.I. Jordan, “Modeling Annotated Data,” Proc. ACM SIGIR, pp. 127134, 2003.
[7] J.S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive Algorithms for Collaborative Filtering,” Proc. 14th Conf. Uncertainty in Artificial Intelligence, pp. 4352, 1998.
[8] G. Carneiro, A.B. Chan, P.J. Moreno, and N. Vasconcelos, “Supervised Learning of Semantic Classes for Image Annotation and Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 394410, Mar. 2007.
[9] A.B. Chan, P.J. Moreno, and N. Vasconcelos, “Using Statistics to Search and Annotate Pictures: An Evaluation of Semantic Image Annotation and Retrieval on Large Databases,” Proc. Am. Statistical Assoc., Aug. 2006.
[10] T.S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.T. Zheng, “NUSWide: A RealWorld Web Image Database from National University of Singapore,” Proc. ACM Conf. Image and Video Retrieval, July 2009.
[11] R. Cilibrasi and P.M.B. Vitányi, “The Google Similarity Distance,” IEEE Trans. Knowledge Data Eng., vol. 19, no. 3, pp. 370383, Mar. 2007.
[12] R. Datta, D. Joshi, J. Li, and J.Z. Wang, “Image Retrieval: Ideas, Influences, and Trends of the New Age,” ACM Computing Surveys, vol. 40, no. 2, pp. 160, 2008.
[13] R. Datta, D. Joshi, J. Li, and J.Z. Wang, “Tagging over Time: RealWorld Image Annotation by Lightweight MetaLearning,” Proc. 15th ACM Int'l Conf. Multimedia, pp. 393402, 2007.
[14] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman, “Indexing by Latent Semantic Analysis,” J. Am. Soc. Information Science, vol. 41, pp. 391407, 1990.
[15] M. Klaas, D. Lang, and N. de Freitas, “Empirical Testing of Fast Kernel Density Estimation Algorithms,” Technical Report UBC TR200503, Computer Sciences Dept., The Univ. of British Columbia, Mar. 2005.
[16] P. Duygulu, K. Barnard, J. de Freitas, and D. Forsyth, “Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary,” Proc. Seventh European Conf. Computer Vision, pp. 349354, 2002.
[17] J. Fan, Y. Gao, and H. Luo, “Hierarchical Classification for Automatic Image Annotation,” Proc. ACM SIGIR, pp. 111118, 2007.
[18] S. Feng, V. Lavrenko, and R. Manmatha, “Multiple Bernoulli Relevance Models for Image and Video Annotation,” Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 10021009, 2004.
[19] S. Feng and R. Manmatha, “A Discrete Direct Retrieval Model for Image and Video Retrieval,” Proc. Int'l Conf. ContentBased Image and Video Retrieval, pp. 427436, 2008.
[20] Flickr, http:/www.flickr.com, Yahoo!, 2005.
[21] J. Friedman, W. Stuetzle, and A. Schroeder, “Projection Pursuit Density Estimation,” J. Am. Statistical Assoc., vol. 79, pp. 599608, 1984.
[22] E. Gaussier and C. Goutte, “Relation between PLSA and NMF and Implications,” Proc. ACM SIGIR '05, pp. 601602, 2005.
[23] D. Goldberg, D. Nichols, B.M. Oki, and D.B. Terry, “Using Collaborative Filtering to Weave an Information Tapestry,” Comm. ACM, vol. 35, no. 12, pp. 6170, 1992.
[24] L. Greengard and J. Strain, “The Fast Gauss Transform,” SIAM J. Scientific and Statistical Computing, vol. 2, no. 1, pp. 7994, 1991.
[25] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “Tagprop: Discriminative Metric Learning in Nearest Neighbor Models for Image AutoAnnotation” Proc. IEEE Int'l Conf. Computer Vision, pp. 309316, Sept. 2009.
[26] C. HalaschekWiener, J. Golbeck, A. Schain, M. Grove, B. Parsia, and J. Hendler, “Photostuff—An Image Annotation Tool for the Semantic Web,” Proc. Fourth Int'l Semantic Web Conf., 2005.
[27] J.L. Herlocker, J.A. Konstan, A. Borchers, and J. Riedl, “An Algorithmic Framework for Performing Collaborative Filtering,” Proc. ACM SIGIR '99 , pp. 230237, 1999.
[28] T. Hofmann, “Probabilistic Latent Semantic Analysis,” Proc. Uncertainty in Artificial Intelligence, pp. 289296, 1999.
[29] J. Jeon, V. Lavrenko, and R. Manmatha, “Automatic Image Annotation and Retrieval Using CrossMedia Relevance Models,” Proc. ACM SIGIR '03, pp. 119126, 2003.
[30] R. Jin, J.Y. Chai, and L. Si, “Effective Automatic Image Annotation via a Coherent Language Model and Active Learning,” Proc. 12th Ann. ACM Int'l Conf. Multimedia, pp. 892899, 2004.
[31] Y. Jin, L. Khan, L. Wang, and M. Awad, “Image Annotations by Combining Multiple Evidence & Wordnet,” Proc. 13th Ann. ACM Int'l Conf. Multimedia, pp. 706715, Nov. 2005.
[32] V. Lavrenko, R. Manmatha, and J. Jeon, “A Model for Learning the Semantics of Pictures,” Advances in Neural Information Processing Systems, MIT Press, 2003.
[33] D.D. Lee and H.S. Seung, “Learning the Parts of Objects by Nonnegative Matrix Factorization,” Nature, vol. 401, pp. 788791, 1999.
[34] D.D. Lee and H.S. Seung, “Algorithms for NonNegative Matrix Factorization,” Proc. Neural Information Processing Systems, pp. 556562, 2000.
[35] F.F. Li and P. Perona, “A Bayesian Hierarchical Model for Learning Natural Scene Categories,” Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, pp. 524531, 2005.
[36] J. Li and J. Ze Wang, “Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 10751088, Sept. 2003.
[37] J. Li and J. Ze Wang, “RealTime Computerized Annotation of Pictures,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 9851002, June 2008.
[38] C.J. Lin, “Projected Gradient Methods for Nonnegative Matrix Factorization,” Neural Computation, vol. 19, no. 10, pp. 27562779, 2007.
[39] J. Liu, B. Wang, M. Li, Z. Li, W.Y. Ma, H. Lu, and S. Ma, “Dual CrossMedia Relevance Model for Image Annotation,” Proc. 15th ACM Int'l Conf. Multimedia, pp. 605614, 2007.
[40] J. Liu, B. Wang, H. Lu, and S. Ma, “A GraphBased Image Annotation Framework,” Pattern Recognition Letters, vol. 29, no. 4, pp. 407415, 2008.
[41] W. Liu, S. Dumais, Y. Sun, H. Zhang, M. Czerwinski, and B. Field, “SemiAutomatic Image Annotation,” Proc. Eighth IFIP TC.13 Conf. HumanComputer Interaction, July 2001.
[42] N. Loeff and A. Farhadi, “Scene Discovery by Matrix Factorization,” Proc. European Conf. Computer Vision, vol. 4, pp. 451464, 2008.
[43] A. Makadia, V. Pavlovic, and S. Kumar, “A New Baseline for Image Annotation,” Proc. European Conf. Computer Vision, vol. 3, pp. 316329, 2008.
[44] I. Endres, N. Loeff, A. Farhadi, and D.A. Forsyth, “Unlabeled Data Improves Word Prediction,” Proc. IEEE Int'l Conf. Computer Vision, pp. 956962, 2009.
[45] E. Parzen, “On Estimation of a Probability Density Function and Mode,” Annals of Math. Statistics, vol. 33, no. 3, pp. 10651076, 1962.
[46] G. Qiu, “Indexing Chromatic and Achromatic Patterns for ContentBased Colour Image Retrieval,” Pattern Recognition, vol. 35, pp. 16751685, Aug. 2002.
[47] A. Schein, A. Popescul, L. Ungar, and D. Pennock, “Methods and Metrics for ColdStart Recommendations,” Proc. ACM SIGIR '02, pp. 253260, 2002.
[48] B. Sigurbjörnsson and R. van Zwol, “Flickr Tag Recommendation Based on Collective Knowledge,” Proc. 17th Int'l Conf. World Wide Web, pp. 327336, Apr. 2008.
[49] A. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, “ContentBased Image Retrieval at the End of the Early Years,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 13491380, Dec. 2000.
[50] M. Szummer and R.W. Picard, “IndoorOutdoor Image Classification,” Proc. IEEE Int'l. Workshop ContentBased Access of Image and Video Database, pp. 4251, 1998.
[51] S. Uchihashi and T. Kanade, “ContentFree Image Retrieval by Combinations of Keywords and User Feedbacks,” Proc. Fourth Int'l Conf. Image and Video Retrieval, pp. 650659, 2005.
[52] A. Vailaya, A.K. Jain, and H. Zhang, “On Image Classification: City Images versus Landscapes,” Pattern Recognition, vol. 31, no. 12, pp. 19211935, 1998.
[53] N. Vasconcelos and M. Kunt, “ContentBased Retrieval from Image Databases: Current Solutions and Future Directions,” Proc. IEEE Int'l Conf. Image Processing, vol. 3, pp. 69, 2001.
[54] Y. Wang and S. Gong, “Refining Image Annotation Using Contextual Relations between Words,” Proc. Sixth Int'l Conf. Image and Video Retrieval, pp. 425432, 2007.
[55] S.M. Weiss and N. Indurkhya, “Lightweight Collaborative Filtering Method for BinaryEncoded Data,” Proc. Fifth European Conf. Principles of Data Mining and Knowledge Discovery, pp. 484491, Sept. 2001.
[56] Y. Xiang, X. Zhou, T.S. Chua, and C.W. Ngo, “A Revisit of Generative Model for Automatic Image Annotation Using Markov Random Fields,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 11531160, 2009.
[57] W. Xu, X. Liu, and Y. Gong, “Document Clustering Based on NonNegative Matrix Factorization,” Proc. ACM SIGIR, pp. 267273, 2003.
[58] C. Yang, R. Duraiswami, N.A. Gumerov, and L.S. Davis, “Improved Fast Gauss Transform and Efficient Kernel Density Estimation,” Proc. Ninth IEEE Int'l Conf. Computer Vision, pp. 464471, 2003.
[59] A. Yavlinsky, E. Schofield, and S.M. Rüger, “Automated Image Annotation Using Global Features and Robust Nonparametric Density Estimation,” Proc. Fourth Int'l Conf. Image and Video Retrieval, pp. 507517, 2005.
[60] C. Zhai and J.D. Lafferty, “A Study of Smoothing Methods for Language Models Applied to Information Retrieval,” ACM Trans. Information Systems, vol. 22, no. 2, pp. 179214, 2004.
[61] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from Incomplete Ratings Using NonNegative Matrix Factorization,” Proc. Sixth SIAM Int'l Conf. Data Mining, Apr. 2006.
[62] N. Zhou, W.K. Cheung, X. Xue, and G. Qiu, “Collaborative and ContentBased Image Labeling,” Proc. Int'l. Conf. Pattern Recognition, pp. 14, 2008.