CSDL Home IEEE Transactions on Pattern Analysis & Machine Intelligence 2011 vol.33 Issue No.03 - March

Subscribe

Issue No.03 - March (2011 vol.33)

pp: 531-552

Nikos Komodakis , University of Crete, Heraklion

Georgios Tziritas , University of Crete, Heraklion

ABSTRACT

This paper introduces a new rigorous theoretical framework to address discrete MRF-based optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first decomposing it into a set of appropriately chosen subproblems, and then combining their solutions in a principled way. In order to determine the limits of this method, we analyze the conditions that these subproblems have to satisfy and demonstrate the extreme generality and flexibility of such an approach. We thus show that by appropriately choosing what subproblems to use, one can design novel and very powerful MRF optimization algorithms. For instance, in this manner we are able to derive algorithms that: 1) generalize and extend state-of-the-art message-passing methods, 2) optimize very tight LP-relaxations to MRF optimization, and 3) take full advantage of the special structure that may exist in particular MRFs, allowing the use of efficient inference techniques such as, e.g., graph-cut-based methods. Theoretical analysis on the bounds related with the different algorithms derived from our framework and experimental results/comparisons using synthetic and real data for a variety of tasks in computer vision demonstrate the extreme potentials of our approach.

INDEX TERMS

Discrete optimization, linear programming, Markov random fields, graphical models, message-passing, graph-cuts.

CITATION

Nikos Komodakis, Georgios Tziritas, "MRF Energy Minimization and Beyond via Dual Decomposition",

*IEEE Transactions on Pattern Analysis & Machine Intelligence*, vol.33, no. 3, pp. 531-552, March 2011, doi:10.1109/TPAMI.2010.108REFERENCES