
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Liang Sun, Shuiwang Ji, Jieping Ye, "Canonical Correlation Analysis for Multilabel Classification: A LeastSquares Formulation, Extensions, and Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 194200, January, 2011.  
BibTex  x  
@article{ 10.1109/TPAMI.2010.160, author = {Liang Sun and Shuiwang Ji and Jieping Ye}, title = {Canonical Correlation Analysis for Multilabel Classification: A LeastSquares Formulation, Extensions, and Analysis}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {33}, number = {1}, issn = {01628828}, year = {2011}, pages = {194200}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.160}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Canonical Correlation Analysis for Multilabel Classification: A LeastSquares Formulation, Extensions, and Analysis IS  1 SN  01628828 SP194 EP200 EPD  194200 A1  Liang Sun, A1  Shuiwang Ji, A1  Jieping Ye, PY  2011 KW  Canonical correlation analysis KW  least squares KW  multilabel learning KW  partial least squares KW  regularization. VL  33 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] H. Hotelling, "Relations between Two Sets of Variables," Biometrika, vol. 28, pp. 312377, 1936.
[2] D. Hardoon, S. Szedmak, and J. ShaweTaylor, "Canonical Correlation Analysis: An Overview with Application to Learning Methods," Neural Computation, vol. 16, no. 12, 2004.
[3] J.P. Vert and M. Kanehisa, "GraphDriven Feature Extraction from Microarray Data Using Diffusion Kernels and Kernel CCA," Proc. Ann. Conf. Neural Information Processing Systems, vol. 15, pp. 14251432, 2003.
[4] S. Yu, K. Yu, V. Tresp, and H.P. Kriegel, "MultiOutput Regularized Feature Projection," IEEE Trans. Knowledge and Data Eng., vol. 18, no. 12, pp. 16001613, Dec. 2006.
[5] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[6] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
[7] G. Golub and C.V. Loan, Matrix Computations. Johns Hopkins Press, 1996.
[8] R. Tibshirani, "Regression Shrinkage and Selection via the Lasso," J. Royal Statistical Soc.: Series B, vol. 58, no. 1, pp. 267288, 1996.
[9] A. d'Aspremont, L. Ghaoui, M. Jordan, and G. Lanckriet, "A Direct Formulation for Sparse PCA Using Semidefinite Programming," Proc. Ann. Conf. Neural Information Processing Systems, vol. 16, pp. 4148, 2004.
[10] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, "1Norm Support Vector Machines," Proc. Ann. Conf. Neural Information Processing Systems, vol. 15, pp. 4956, 2003.
[11] D. Watkins, Fundamentals of Matrix Computations. John Wiley & Sons, Inc., 1991.
[12] B. Sriperumbudur, D. Torres, and G. Lanckriet, "Sparse Eigen Methods by D.C. Programming," Proc. Int'l Conf. Machine Learning, pp. 831838, 2007.
[13] T. Hastie, A. Buja, and R. Tibshirani, "Penalized Discriminant Analysis," Annals of Statistics, vol. 23, pp. 73102, 1995.
[14] C. Paige and M. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM Trans. Math. Software, vol. 8, no. 1, pp. 4371, 1982.
[15] F. Bach and M. Jordan, "Kernel Independent Component Analysis," J. Machine Learning Research, vol. 3, pp. 148, 2003.
[16] J. Ye, "Least Squares Linear Discriminant Analysis," Proc. Int'l Conf. Machine Learning, pp. 10871094, 2007.
[17] B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
[18] J. Liu, S. Ji, and J. Ye, SLEP: Sparse Learning with Efficient Projections. Arizona State Univ., http://www.public.asu.edu/jye02/Software SLEP, 2009.
[19] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, "Pathwise Coordinate Optimization," Annals of Applied Statistics, pp. 302332, 2007.
[20] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least Angle Regression," Annals of Statistics, vol. 32, pp. 407499, 2004.
[21] Y. Saad, Numerical Methods for Large Eigenvalue Problems. Halsted Press, 1992.
[22] M. Barker and W. Rayens, "Partial Least Squares for Discrimination," J. Chemometrics, vol. 17, no. 3, pp. 166173, 2003.
[23] D. Hardoon, "Semantic Models for Machine Learning," PhD dissertation, Univ. of Southampton, 2006.
[24] R. Rosipal and N. Krämer, "Overview and Recent Advances in Partial Least Squares," Subspace, Latent Structure and Feature Selection Techniques, pp. 3451, Springer, 2006.
[25] K. Worsley, J.B. Poline, K. Friston, and A. Evans, "Characterizing the Response of PET and fMRI Data Using Multivariate Linear Models," Neuroimage, vol. 6, no. 4, pp. 305319, 1997.
[26] F. Bach and M. Jordan, "A Probabilistic Interpretation of Canonical Correlation Analysis," technical report, Univ. of California, Berkeley, 2005.
[27] D. Hardoon and J. ShaweTaylor, "KCCA for Different Level Precision in ContentBased Image Retrieval," Proc. Third Int'l Workshop ContentBased Multimedia Indexing, 2003.
[28] P. Tomancak et al., "Systematic Determination of Patterns of Gene Expression During Drosophila Embryogenesis," Genome Biology, vol. 3, no. 12, p. 88, 2002.
[29] M. Boutell, J. Luo, X. Shen, and C. Brown, "Learning MultiLabel Scene Classification," Pattern Recognition, vol. 37, no. 9, pp. 17571771, 2004.
[30] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, "Maximal Margin Labeling for MultiTopic Text Categorization," Proc. Ann. Conf. Neural Information Processing Systems, vol. 17, pp. 649656, 2005.
[31] Y. Yang and J. Pedersen, "A Comparative Study on Feature Selection in Text Categorization," Proc. Int'l Conf. Machine Learning, pp. 412420, 1997.
[32] J. ShaweTaylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.