This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Generative Supervised Classification Using Dirichlet Process Priors
October 2010 (vol. 32 no. 10)
pp. 1781-1794
Manuel Davy, VEKIA, Lille
Jean-Yves Tourneret, University of Toulouse, Toulouse
Choosing the appropriate parameter prior distributions associated to a given Bayesian model is a challenging problem. Conjugate priors can be selected for simplicity motivations. However, conjugate priors can be too restrictive to accurately model the available prior information. This paper studies a new generative supervised classifier which assumes that the parameter prior distributions conditioned on each class are mixtures of Dirichlet processes. The motivations for using mixtures of Dirichlet processes is their known ability to model accurately a large class of probability distributions. A Monte Carlo method allowing one to sample according to the resulting class-conditional posterior distributions is then studied. The parameters appearing in the class-conditional densities can then be estimated using these generated samples (following Bayesian learning). The proposed supervised classifier is applied to the classification of altimetric waveforms backscattered from different surfaces (oceans, ices, forests, and deserts). This classification is a first step before developing tools allowing for the extraction of useful geophysical information from altimetric waveforms backscattered from nonoceanic surfaces.
Index Terms:
Supervised classification, Bayesian inference, Gibbs sampler, Dirichlet processes, altimetric signals.
Citation:
Manuel Davy, Jean-Yves Tourneret, "Generative Supervised Classification Using Dirichlet Process Priors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 10, pp. 1781-1794, Oct. 2010, doi:10.1109/TPAMI.2010.21
Usage of this product signifies your acceptance of the Terms of Use.