CSDL Home IEEE Transactions on Pattern Analysis & Machine Intelligence 2010 vol.32 Issue No.06 - June

Subscribe

Issue No.06 - June (2010 vol.32)

pp: 1072-1083

Lewis D. Griffin , University College London, London

Martin Lillholm , University College London, London

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.91

ABSTRACT

We consider the measurement of image structure using linear filters, in particular derivative-of-Gaussian (DtG) filters, which are an important model of V1 simple cells and widely used in computer vision, and whether such measurements can determine local image symmetry. We show that even a single linear filter can be sensitive to a symmetry, in the sense that specific responses of the filter can rule it out. We state and prove a necessary and sufficient, readily computable, criterion for filter symmetry-sensitivity. We use it to show that the six filters in a second order DtG family have patterns of joint sensitivity which are distinct for 12 different classes of symmetry. This rich symmetry-sensitivity adds to the properties that make DtG filters well-suited for probing local image structure, and provides a set of landmark responses suitable to be the foundation of a nonarbitrary system of feature categories.

INDEX TERMS

Group theory, invariance, pattern analysis

CITATION

Lewis D. Griffin, Martin Lillholm, "Symmetry Sensitivities of Derivative-of-Gaussian Filters",

*IEEE Transactions on Pattern Analysis & Machine Intelligence*, vol.32, no. 6, pp. 1072-1083, June 2010, doi:10.1109/TPAMI.2009.91REFERENCES