This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Fast Algorithm for Walsh Hadamard Transform on Sliding Windows
January 2010 (vol. 32 no. 1)
pp. 165-171
Wanli Ouyang, The Chinese University of Hong Kong, Hong Kong
Wai-Kuen Cham, The Chinese University of Hong Kong, Hong Kong
This paper proposes a fast algorithm for Walsh Hadamard Transform on sliding windows which can be used to implement pattern matching most efficiently. The computational requirement of the proposed algorithm is about 1.5 additions per projection vector per sample, which is the lowest among existing fast algorithms for Walsh Hadamard Transform on sliding windows.

[1] M.S. Aksoy, O. Torkul, and I.H. Cedimoglu, “An Industrial Visual Inspection System that Uses Inductive Learning,” J. Intelligent Manufacturing, vol. 15, no. 4, pp. 569-574, Aug. 2004.
[2] A.W. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-Based Rendering Using Image-Based Priors,” Proc. Int'l Conf. Computer Vision, vol. 2, pp.1176-1183, Oct. 2003.
[3] T. Luczak and W. Szpankowski, “A Suboptimal Lossy Data Compression Based on Approximate Pattern Matching,” IEEE Trans. Information Theory, vol. 43, no. 5, pp. 1439-1451, Sept. 1997.
[4] R.M. Dufour, E.L. Miller, and N.P. Galatsanos, “Template Matching Based Object Recognition with Unknown Geometric Parameters,” IEEE Trans. Image Processing, vol. 11, no. 12, pp. 1385-1396, Dec. 2002.
[5] C.M. Mak, N. Li, and W.K. Cham, “Fast Motion Estimation in Walsh Hadamard Domain,” Proc. Int'l Symp. Intelligent Signal Processing and Comm. Systems, pp. 349-352, Dec. 2005.
[6] ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, JVT-G050, Mar. 2003.
[7] C.M. Mak, C.K. Fong, and W.K. Cham, “Fast Motion Estimation for H.264/AVC in Walsh Hadamard Domain,” IEEE Trans. Circuits and Systems for Video Technology, vol. 18, no. 6, pp. 735-745, June 2008.
[8] Y. Moshe and H. Hel-Or, “A Fast Block Motion Estimation Algorithm Using Gray Code Kernels,” Proc. IEEE Symp. Signal Processing and Information Technology, pp. 185-190, Aug. 2006.
[9] Y. Hel-Or and H. Hel-Or, “Real Time Pattern Matching Using Projection Kernels,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1430-1445, Sept. 2005.
[10] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “The Gray-Code Filter Kernels,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 382-393, Mar. 2007.
[11] S. Omachiand and M. Omachi, “Fast Template Matching with Polynomials,” IEEE Trans. Image Processing, vol. 16, no. 8, pp. 2139-2149, Aug. 2007.
[12] G.J. VanderBrug and A. Rosenfeld, “Two-Stage Template Matching,” IEEE Trans. Computers, vol. 26, no. 4, pp. 384-393, Apr. 1977.
[13] M. Ben-Yehuda, L. Cadany, H. Hel-Or, and Y. Hel-Or, “Irregular Pattern Matching Using Projection,” Proc. IEEE Int'l Conf. Image Processing, Sept. 2005.
[14] J.L. Shanks, “Computation of the Fast Walsh-Fourier Transform,” IEEE Trans. Computers, vol. 18, no. 5, pp. 457-459, May 1969.
[15] W.K. Cham and R.J. Clarke, “Dyadic Symmetry and Walsh Matrices,” Proc. IEE, Pt. F., vol. 134, no. 2, pp. 141-145, Apr. 1987.

Index Terms:
Fast algorithm, Walsh Hadamard Transform, pattern matching, template matching, feature extraction.
Citation:
Wanli Ouyang, Wai-Kuen Cham, "Fast Algorithm for Walsh Hadamard Transform on Sliding Windows," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 165-171, Jan. 2010, doi:10.1109/TPAMI.2009.104
Usage of this product signifies your acceptance of the Terms of Use.