
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Richard Nock, Frank Nielsen, "Bregman Divergences and Surrogates for Learning," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 20482059, November, 2009.  
BibTex  x  
@article{ 10.1109/TPAMI.2008.225, author = {Richard Nock and Frank Nielsen}, title = {Bregman Divergences and Surrogates for Learning}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {31}, number = {11}, issn = {01628828}, year = {2009}, pages = {20482059}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.225}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Bregman Divergences and Surrogates for Learning IS  11 SN  01628828 SP2048 EP2059 EPD  20482059 A1  Richard Nock, A1  Frank Nielsen, PY  2009 KW  Ensemble learning KW  boosting KW  Bregman divergences KW  linear separators KW  decision trees. VL  31 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] P. Bartlett , M. Jordan , and J.D. McAuliffe , “Convexity, Classification, and Risk Bounds,” J. Am. Statistical Assoc., vol. 101, pp. 138156, 2006.
[2] P. Bartlett and M. Traskin , “Adaboost is Consistent,” Proc. Neural Information Processing Systems Conf., 2006.
[3] M.J. Kearns and Y. Mansour , “On the Boosting Ability of TopDown Decision Tree Learning Algorithms,” J. Computer and System Sciences, vol. 58, pp. 109128, 1999.
[4] R.E. Schapire and Y. Singer , “Improved Boosting Algorithms Using ConfidenceRated Predictions,” Proc. Conf. Computational Learning Theory, pp. 8091, 1998.
[5] J. Friedman , T. Hastie , and R. Tibshirani , “Additive Logistic Regression: A Statistical View of Boosting,” Annals of Statistics, vol. 28, pp. 337374, 2000.
[6] V. Vapnik , Statistical Learning Theory. John Wiley, 1998.
[7] N. Murata , T. Takenouchi , T. Kanamori , and S. Eguchi , “Information Geometry of ${\cal U}$ Boost and Bregman Divergence,” Neural Computation, vol. 16, pp. 14371481, 2004.
[8] P. Grünwald and P. Dawid , “Game Theory, Maximum Entropy, Minimum Discrepancy and Robust Bayesian Decision Theory,” Annals of Statistics, vol. 32, pp. 13671433, 2004.
[9] M. Collins , R. Schapire , and Y. Singer , “Logistic Regression, Adaboost and Bregman Distances,” Proc. Conf. Computational Learning Theory, pp. 158169, 2000.
[10] R.E. Schapire and Y. Singer , “Improved Boosting Algorithms Using ConfidenceRated Predictions,” Machine Learning, vol. 37, pp. 297336, 1999.
[11] A. Azran and R. Meir , “Data Dependent Risk Bounds for Hierarchical Mixture of Experts Classifiers,” Proc. Conf. Computational Learning Theory, pp. 427441, 2004.
[12] A. Banerjee , X. Guo , and H. Wang , “On the Optimality of Conditional Expectation As a Bregman Predictor,” IEEE Trans. Information Theory, vol. 51, pp. 26642669, 2005.
[13] C. Gentile and M. Warmuth , “Linear Hinge Loss and Average Margin,” Proc. 1998 Conf. Advances in Neural Information Processing Systems, pp. 225231, 1998.
[14] D. Helmbold , J. Kivinen , and M. Warmuth , “Relative Loss Bounds for Single Neurons,” IEEE Trans. Neural Networks, vol. 10, no. 6, pp.12911304, Nov. 1999.
[15] A. Banerjee , S. Merugu , I. Dhillon , and J. Ghosh , “Clustering with Bregman Divergences,” J. Machine Learning Research, vol. 6, no. 6, pp.17051749, Nov. 2005.
[16] R. Nock and F. Nielsen , “A ${\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}$ eal Generalization of Discrete AdaBoost,” Artificial Intelligence, vol. 171, pp. 2541, 2007.
[17] R.E. Schapire , Y. Freund , P. Bartlett , and W.S. Lee , “Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods,” Annals of Statistics, vol. 26, pp. 16511686, 1998.
[18] L. Breiman , J.H. Freidman , R.A. Olshen , and C.J. Stone , Classification and Regression Trees. Wadsworth, 1984.
[19] J.R. Quinlan , C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[20] K. Matsushita , “Decision Rule, Based on Distance, for the Classification Problem,” Annals of the Inst. of Statistical Math., vol. 8, pp. 6777, 1956.
[21] M. Warmuth , J. Liao , and G. Rätsch , “Totally Corrective Boosting Algorithms that Maximize the Margin,” Proc. Int'l Conf. Machine Learning, pp. 10011008, 2006.
[22] J. Kivinen and M. Warmuth , “Boosting As Entropy Projection,” Proc. Conf. Computational Learning Theory, pp. 134144, 1999.
[23] R. Nock and F. Nielsen , “On DomainPartitioning Induction Criteria: WorstCase Bounds for the WorstCase Based,” Theoretical Computer Science, vol. 321, pp. 371382, 2004.
[24] C. Henry , R. Nock , and F. Nielsen , “ ${\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}$ eal Boosting a la Carte with an Application to Boosting Oblique Decision Trees,” Proc. 21st Int'l Joint Conf. Artificial Intelligence, pp. 842847, 2007.
[25] C.L. Blake , E. Keogh , and C.J. Merz , “UCI Repository of Machine Learning Databases,” http://www.ics.uci.edu/~mlearnMLRepository.html , 1998.