
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Qing Wang, Olaf Ronneberger, Hans Burkhardt, "Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 17151722, September, 2009.  
BibTex  x  
@article{ 10.1109/TPAMI.2009.29, author = {Qing Wang and Olaf Ronneberger and Hans Burkhardt}, title = {Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {31}, number = {9}, issn = {01628828}, year = {2009}, pages = {17151722}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.29}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates IS  9 SN  01628828 SP1715 EP1722 EPD  17151722 A1  Qing Wang, A1  Olaf Ronneberger, A1  Hans Burkhardt, PY  2009 KW  Invariants KW  Fourier analysis KW  radial transform KW  multidimensional. VL  31 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] N.N. Lebedev, Special Functions and Their Applications (translated from Russian by R.A. Silverman), chapters 5, 6, 8. Dover, 1972.
[2] W. Kaplan, Advanced Calculus, fourth ed., pp. 696698. AddisonWesley, 1991.
[3] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, seventh ed., pp. 523525. Cambridge, 1989.
[4] E.W. Weisstein, “JacobiAnger Expansion,” From MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.comJacobiAngerExpansion. html , 2009.
[5] K.E. Schmidt, “The Expansion of a Plane Wave,” http://fermi.la.asu.edu/PHY577/notesplane.pdf , 2009.
[6] S. Erturk and T.J. Dennis, “3D Model Representation Using Spherical Harmonics,” Electronics Letters, vol. 33, no. 11, pp. 951952, 1997.
[7] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors,” Proc. Symp. Geometry Processing, pp. 167175, 2003.
[8] H. Huang, L. Shen, R. Zhang, F. Makedon, A. Saykin, and J. Pearlman, “A Novel Surface Registration Algorithm with Medical Modeling Applications,” IEEE Trans. Information Technology in Biomedicine, vol. 11, no. 4, pp.474482, July 2007.
[9] C.H. Teh and R.T. Chin, “On Image Analysis by the Methods of Moments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 496513, July 1988.
[10] Y. Zana and R.M. CesarJr., “Face Recognition Based on Polar Frequency Features,” ACM Trans. Applied Perception, vol. 3, no. 1, pp. 6282, 2006.
[11] A. Khotanzad and Y.H. Hong, “Invariant Image Recognition by Zernike Moments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 5, pp. 489497, May 1990.
[12] W.Y. Kim and Y.S. Kim, “Robust Rotation Angle Estimator,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 768773, Aug. 1999.
[13] E.M. Arvacheh and H.R. Tizhoosh, “Pattern Analysis Using Zernike Moments,” Proc. IEEE Instrumentation and Measurement Technology Conf., vol. 2, pp. 15741578, 2005.
[14] A. Averbuch, R.R. Coifman, D.L. Donoho, M. Elad, and M. Israeli, “Accurate and Fast Discrete Polar Fourier Transform,” Proc. Conf. Record 37th Asilomar Conf. Signals, Systems, and Computers, vol. 2, pp. 19331937, 2003.
[15] A. Makadia, L. Sorgi, and K. Daniilidis, “Rotation Estimation from Spherical Images,” Proc. 17th Int'l Conf. Pattern Recognition, vol. 3, pp.590593, 2004.
[16] R. Skomski, J.P. Liu, and D.J. Sellmyer, “Quasicoherent Nucleation Mode in TwoPhase Nanomagnets,” Physical Rev. B, vol. 60, pp. 73597365, 1999.
[17] B. Pons, “Ability of Monocentric CloseCoupling Expansions to Describe Ionization in Atomic Collisions,” Physical Rev. A, vol. 63, p. 012704, 2000.
[18] R. Bisseling and R. Kosloff, “The Fast Hankel Transform as a Tool in the Solution of the Time Dependent Schrödinger Equation,” J. Computational Physics, vol. 59, no. 1, pp. 136151, 1985.
[19] D. Lemoine, “The Discrete Bessel Transform Algorithm,” J. Chemical Physics, vol. 101, no. 5, pp. 39363944, 1994.
[20] O. Ronneberger, E. Schultz, and H. Burkhardt, “Automated Pollen Recognition Using 3D Volume Images from Fluorescence Microscopy,” Aerobiologia, vol. 18, pp. 107115, 2002.
[21] H. Burkhardt, Transformationen zur lageinvarianten Merkmalgewinnung, Ersch. als Fortschrittbericht (Reihe 10, Nr. 7) der VDIZeitschriften. VDIVerlag, 1979.
[22] O. Ronneberger, J. Fehr, and H. Burkhardt, “VoxelWise Gray Scale Invariants for Simultaneous Segmentation and Classification,” Proc. 27th DAGM Symp., pp. 8592, 2005.
[23] Q. Wang, O. Ronneberger, and H. Burkhardt, “Fourier Analysis in Polar and Spherical Coordinates,” internal report, http://lmb.informatik.unifreiburg.depapers /, 2008.
[24] C.C. Chang and C.J. Lin, “LIBSVM—A Library for Support Vector Machines,” http://www.csie.ntu.edu.tw/cjlinlibsvm/, 2009.
[25] FFTW Home Page, http:/www.fftw.org/, 2009.
[26] Fast Spherical Harmonic Transforms, http://www.cs.dartmouth.edu/ geelongsphere /, 2009.
[27] The Gnu Scientific Library, http://www.gnu.org/softwaregsl/, 2009.