The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.08 - August (2009 vol.31)
pp: 1510-1516
Dan A. Alcantara , University of California, Davis, Davis
Owen Carmichael , University of California, Davis, Davis
Will Harcourt-Smith , American Museum of Natural History, New York
Kirstin Sterner , New York University, New York
Stephen R. Frost , University of Oregon, Eugene
Rebecca Dutton , University of California, San Francisco, San Francisco
Paul Thompson , University of California, Los Angeles, Los Angeles
Eric Delson , American Museum of Natural History and Lehman College, City University of New York, New York
Nina Amenta , University of California, Davis, Davis
ABSTRACT
Localized Components Analysis (LoCA) is a new method for describing surface shape variation in an ensemble of objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicitly for localized components and allows a flexible trade-off between localized and concise representations, and the formulation of locality is flexible enough to incorporate properties such as symmetry. This paper demonstrates that LoCA can provide intuitive presentations of shape differences associated with sex, disease state, and species in a broad range of biomedical specimens, including human brain regions and monkey crania.
INDEX TERMS
Feature representation, size and shape, life and medical sciences.
CITATION
Dan A. Alcantara, Owen Carmichael, Will Harcourt-Smith, Kirstin Sterner, Stephen R. Frost, Rebecca Dutton, Paul Thompson, Eric Delson, Nina Amenta, "Exploration of Shape Variation Using Localized Components Analysis", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.31, no. 8, pp. 1510-1516, August 2009, doi:10.1109/TPAMI.2008.287
REFERENCES
[1] O.T. Carmichael, P.M. Thompson, R.A. Dutton, A. Lu, S.E. Lee, J.Y. Lee, L.H. Kuller, O.L. Lopez, H.J. Aizenstein, C.C. Meltzer, Y. Liu, A.W. Toga, and J.T. Becker, “Mapping Ventricular Changes Related to Dementia and Mild Cognitive Impairment in a Large Community-Based Cohort,” Proc. IEEE Int'l Symp. Biomedical Imaging, 2006.
[2] D. Curran-Everett, “Multiple Comparisons: Philosophies and Illustrations,” Am. J. Physiology Regulatory, Integrative and Comparative Physiology, vol. 279, no. 1, pp. R1-R8, July 2000.
[3] D. Alcantara, O. Carmichael, E. Delson, W. Harcourt-Smith, K. Sterner, S. Frost, R. Dutton, P. Thompson, H. Aizenstein, O. Lopez, J. Becker, and N. Amenta, “Localized Components Analysis,” Proc. Information Processing in Medical Imaging, pp. 519-531, 2007.
[4] T.F. Cootes, A. Hill, C.J. Taylor, and J. Haslam, “The Use of Active Shape Models for Locating Structures in Medical Images,” Image and Vision Computing, vol. 12, no. 6, pp. 355-366, July 1994.
[5] F.L. Bookstein, Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univ. Press, 1991.
[6] B. Allen, B. Curless, and Z. Popovic, “The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans,” Proc. ACM SIGGRAPH, pp. 587-594, 2003.
[7] C. Chennubhotla and A. Jepson, “Sparse PCA: Extracting Multi-Scale Structure from Data,” Proc. Int'l Conf. Computer Vision, pp. 641-647, 2001.
[8] H. Zou, T. Hastie, and R. Tibshirani, “Sparse Principal Component Analysis,” J. Computational and Graphical Statistics, vol. 15, no. 2, pp. 265-286, June 2006.
[9] K. Sjöstrand, M.B. Stegmann, and R. Larsen, “Sparse Principal Component Analysis in Medical Shape Modeling,” Proc. SPIE Int'l Conf. Medical Imaging: Image Processing, 2006.
[10] M.B. Stegmann, K. Sjöstrand, and R. Larsen, “Sparse Modeling of Landmark and Texture Variability Using the Orthomax Criterion,” Proc. SPIE Int'l Conf. Medical Imaging: Image Processing, 2006.
[11] M. Üzümcü, A. Frangi, M. Sonka, J. Reiber, and B. Lelieveldt, “ICA vs. PCA Active Appearance Models: Application to Cardiac MR Segmentation,” Proc. Int'l Conf. Medical Image Computing and Computer-Assisted Intervention, pp. 451-458, 2003.
[12] M.A.G. Ballester, M.G. Linguraru, M.R. Aguirre, and N. Ayache, “On the Adequacy of Principal Factor Analysis for the Study of Shape Variability,” Proc. SPIE Int'l Conf. Medical Imaging: Image Processing, 2005.
[13] J. Vermaak and P. Perez, “Constrained Subspace Modeling,” Proc. Conf. Computer Vision and Pattern Recognition, June 2003.
[14] S. Pizer, D. Fritsch, P. Yushkevich, V. Johnson, E. Chaney, and G. Gerig, “Segmentation, Registration, and Measurement of Shape Variation via Image Object Shape,” IEEE Trans. Medical Imaging, vol. 18, no. 10, pp. 851-865, Oct. 1999.
[15] W. Press, S. Teukolsky, W.T. Vetterling, and B. Flannery, Numerical Recipes in C, second ed. Cambridge Univ. Press, 1992.
[16] P. Thompson, R. Dutton, K. Hayashi, A. Lu, S. Lee, J. Lee, O. Lopez, H. Aizenstein, A. Toga, and J. Becker, “3D Mapping of Ventricular and Corpus Callosum Abnormalities in HIV/AIDS,” NeuroImage, vol. 31, no. 1, pp. 12-23, May 2006.
[17] S. Witelson, “Hand and Sex Differences in the Isthmus and Body of the Corpus Callosum: A Postmortem Morphological Study,” Brain, vol. 112, pp.799-835, 1989.
[18] D. Ghosh and N. Amenta, “Landmark Transfer Using Deformable Models,” Technical Report CSE-2007-6, Dept. of Computer Science, Univ. of California, Davis, 2007.
[19] M. Habib, D. Gayraud, A. Oliva, J. Regis, G. Salamon, and R. Khalil, “Effects of Handedness and Sex on the Morphology of the Corpus Callosum: A Study with Brain Magnetic Resonance Imaging,” Brain and Cognition, vol. 16, no. 1, pp. 41-61, May 1991.
[20] H. Steinmetz, L. Jancke, A. Kleinschmidt, G. Schlaug, J. Volkmann, and Y. Huang, “Sex but No Hand Difference in the Isthmus of the Corpus Callosum,” Neurology, vol. 42, no. 4, pp. 749-752, Apr. 1992.
[21] K.L. Narr, P.M. Thompson, T. Sharma, J. Moussai, R. Blanton, B. Anvar, A. Edris, R. Krupp, J. Rayman, M. Khaledy, and A.W. Toga, “Three-Dimensional Mapping of Temporo-Limbic Regions and the Lateral Ventricles in Schizophrenia: Gender Effects,” Biological Psychiatry, vol. 50, pp. 84-97, 2001.
[22] P. Thompson, K. Hayashi, G. de Zubicaray, A. Janke, S. Rose, J. Semple, M. Hong, D. Herman, D. Gravano, D. Doddrell, and A. Toga, “Mapping Hippocampal and Ventricular Change in Alzheimer's Disease,” NeuroImage, vol. 22, no. 4, pp. 1754-1766, Aug. 2004.
[23] S.R. Frost, L.F. Marcus, F.L. Bookstein, D.P. Reddy, and E. Delson, “Cranial Allometry, Phylogeography, and Systematics of Large-Bodied Papionins (Primates: Cercopithecinae) Inferred from Geometric Morphometric Analysis of Landmark Data,” The Antatomical Record Part A, vol. 275A, pp. 1048-1072, 2003.
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool