The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.08 - August (2009 vol.31)
pp: 1362-1374
Jean Cousty , Université Paris-Est, ESIEE, and INRIA Sophia Antipolis, France
Gilles Bertrand , Université Paris-Est, ESIEE, France
Laurent Najman , Université Paris-Est, ESIEE, France
Michel Couprie , Université Paris-Est, ESIEE, France
ABSTRACT
We study the watersheds in edge-weighted graphs. We define the watershed cuts following the intuitive idea of drops of water flowing on a topographic surface. We first establish the consistency of these watersheds: They can be equivalently defined by their "catchment basins” (through a steepest descent property) or by the "dividing lines” separating these catchment basins (through the drop of water principle). Then, we prove, through an equivalence theorem, their optimality in terms of minimum spanning forests. Afterward, we introduce a linear-time algorithm to compute them. To the best of our knowledge, similar properties are not verified in other frameworks and the proposed algorithm is the most efficient existing algorithm, both in theory and in practice. Finally, the defined concepts are illustrated in image segmentation, leading to the conclusion that the proposed approach improves, on the tested images, the quality of watershed-based segmentations.
INDEX TERMS
Watershed, minimum spanning forest, minimum spanning tree, graph, mathematical morphology, image segmentation.
CITATION
Jean Cousty, Gilles Bertrand, Laurent Najman, Michel Couprie, "Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.31, no. 8, pp. 1362-1374, August 2009, doi:10.1109/TPAMI.2008.173
REFERENCES
[1] J. Maxwell, “On Hills and Dales,” Philosophical Magazine, vol. 4/40, pp. 421-427, 1870.
[2] C. Jordan, “Nouvelles Observations sur les Lignes de Faîtes et de Thalweg,” Comptes Rendus des Séances de l'Académie des Sciences, vol. 75, pp. 1023-1025, 1872.
[3] H. Digabel and C. Lantuéjoul, “Iterative Algorithms,” Proc. Second European Symp. Quantitative Analysis of Microstructures in Material Science, Biology and Medicine, pp. 85-89, 1978.
[4] S. Beucher and C. Lantuéjoul, “Use of Watersheds in Contour Detection,” Proc. Int'l Workshop Image Processing Real-Time Edge and Motion Detection/Estimation, 1979.
[5] L. Vincent and P. Soille, “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp.583-598, June 1991.
[6] F. Meyer, “Un Algorithme Optimal de Ligne de Partage des Eaux,” Proc. Actes du Huitéme Congrés, pp. 847-859, 1991.
[7] F. Meyer, “Topographic Distance and Watershed Lines,” Signal Processing, vol. 38, no. 1, pp. 113-125, 1993.
[8] L. Najman and M. Schmitt, “Watershed of a Continuous Function,” Signal Processing, vol. 38, no. 1, pp. 68-86, 1993.
[9] F. Lemonnier, “Architecture Electronique Dédiée aux Algorithmes Rapides de Segmentation Basés sur la Morphologie Mathématique,” PhD dissertation, Ecole des Mines de Paris, Dec. 1996.
[10] M. Couprie and G. Bertrand, “Topological Grayscale Watershed Transform,” Proc SPIE Vision Geometry, pp. 136-146, 1997.
[11] A. Meijster and J. Roerdink, “A Disjoint Set Algorithm for the Watershed Transform,” Procs. European Signal Processing Conf., pp.1669-1672, 1998.
[12] A. Bieniek and A. Moga, “A Connected Component Approach to the Watershed Segmentation,” Proc. Int'l Symp. Math. Morphology Math. Morphology and Its Applications to Image and Signal Processing, pp. 215-222, 1998.
[13] S. Stoev, “RAFSI—A Fast Watershed Algorithm Based on Rain-Falling Simulation,” Proc. Eighth Int'l Conf. Computer Graphics, Visualization, and Interactive Digital Media, 2000.
[14] J. Cousty, M. Couprie, L. Najman, and G. Bertrand, “Weighted Fusion Graphs: Merging Properties and Watersheds,” Discrete Applied Math., vol. 156, no. 15, pp. 3011-3027, , 2008.
[15] S. Beucher and F. Meyer, “The Morphological Approach to Segmentation: The Watershed Transformation,” Math. Morphology in Image Processing, E. Dougherty, ed., pp. 443-481, Marcel Dekker, 1993.
[16] G. Bertrand, “On Topological Watersheds,” J. Math. Imaging and Visualization, vol. 22, nos. 2-3, pp. 217-230, May 2005.
[17] M. Couprie, L. Najman, and G. Bertrand, “Quasi-Linear Algorithms for the Topological Watershed,” J. Math. Imaging and Visualization, vol. 22, nos. 2-3, pp. 231-249, 2005.
[18] L. Najman, M. Couprie, and G. Bertrand, “Watersheds, Mosaics and the Emergence Paradigm,” Discrete Applied Math., vol. 147, nos.2-3, pp. 301-324, 2005.
[19] F. Meyer, “Minimum Spanning Forests for Morphological Segmentation,” Proc. Second Int'l Conf. Math. Morphology and Its Applications to Image Processing, pp. 77-84, Sept. 1994.
[20] K. Udupa and S. Samarsekara, “Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation,” Graphical Models and Image Processing, vol. 58, pp.246-261, 1996.
[21] J.K. Udupa, P.K. Saha, and R.A. Lotufo, “Relative Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 11, pp. 1485-1500, Nov. 2002.
[22] Y. Zhuge, J.K. Udupa, and P.K. Saha, “Vectorial Scale-Based Fuzzy-Connected Image Segmentation,” Computer Visualization and Image Understanding, vol. 101, pp. 177-193, 2006.
[23] R. Englert and W. Kropatsch, “Image Structure from Monotonic Dual Graph,” Proc. Applications of Graph Transformations with Industrial Relevance, International Workshop, pp. 297-308, 2000.
[24] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy Minimization via Graph Cuts,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
[25] A.X. Falcão, J. Stolfi, and R. de Alencar Lotufo, “The Image Foresting Transform: Theory, Algorithm and Applications,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp.19-29, Jan. 2004.
[26] R. Lotufo and A. Falcão, “The Ordered Queue and the Optimality of the Watershed Approaches,” Proc. Fifth Int'l Symp. Math. Morphology, pp. 341-350, 2000.
[27] J. Cousty, G. Bertrand, L. Najman, and M. Couprie, “Watershed Cuts,” Procs. Int'l Symp. Math. Morphology, pp. 301-312, 2007.
[28] R. Diestel, Graph Theory. Springer, 1997.
[29] T. Kong and A. Rosenfeld, “Digital Topology: Introduction and Survey,” Computer Vision, Graphics, and Image Processing, vol. 48, no. 3, pp. 357-393, 1989.
[30] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis, “Complexity of Multiway Cuts,” Proc. 24th Ann. ACM Symp. Theory of Computing, pp. 241-251, 1992.
[31] C. Allène, J.-Y. Audibert, M. Couprie, J. Cousty, and R. Keriven, “Some Links between Min-Cuts, Optimal Spanning Forests and Watersheds,” Proc. Int'l Symp. Math. Morphology, pp. 253-264, 2007.
[32] P. Soille and C. Gratin, “An Efficient Algorithm for Drainage Network Extraction on DEMs,” J. Visual Comm. and Image Representation, vol. 5, no. 2, pp. 181-189, 1994.
[33] J.B.T.M. Roerdink and A. Meijster, “The Watershed Transform: Definitions, Algorithms and Parallelization Strategies,” Fundamenta Informaticae, vol. 41, nos. 1-2, pp. 187-228, 2001.
[34] J. Cousty, “Lignes de Partage des eaux Discrètes: Théorie et Application à la Segmentation d'Images Cardiaques,” PhD dissertation, Université de Marne-la-Vallée, 2007.
[35] J. Kruskal, “On the Shortest Spanning Tree of a Graph and the Traveling Salesman Problem,” Proc. Am. Math. Soc., vol. 7, pp. 48-50, 1956.
[36] R. Prim, “Shortest Connection Networks and Some Generalizations,” Bell Systems Technical J., vol. 36, pp. 1389-1401, 1957.
[37] R.L. Graham and P. Hell, “On the History of the Minimum Spanning Tree Problem,” Annals of the History of Computing, vol. 7, pp. 43-57, 1985.
[38] J. Nesetril, E. Milková, and H. Nesetrilová, “Otakar Boruvka on Minimum Spanning Tree Problem. Translation of Both 1926 Papers, Comments, History,” Discrete Math., vol. 233, pp. 3-36, 2001.
[39] C. Zahn, “Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters,” IEEE Trans. Computers, vol. 20, no. 1, pp. 99-112, Jan. 1971.
[40] B. Chazelle, “A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type Complexity,” J. ACM, vol. 47, pp. 1028-1047, 2000.
[41] M. Thorup, “On Ram Priority Queues,” Proc. Seventh ACM-SIAM Symposium on Discrete Algorithms, pp. 59-67, 1996.
[42] R. Tarjan, “Efficiency of a Good but Not Linear Set Union Algorithm,” J. ACM, vol. 22, pp. 215-225, 1975.
[43] J. Cousty, G. Bertrand, L. Najman, and M. Couprie, “Watershed Cuts: Thinnings, Topological Watersheds, and Shortest Path Forests,” IEEE Trans. Pattern Analysis and Machine Intelligence, preprint,http://igm.univ-mlv.fr/LabInfo/rapportsInternes/ 2007/09.v2.pdfhttp://doi.ieeecomputersociety.org/ 10.1109TPAMI.2009.71.
[44] M. Grimaud, “New Measure of Contrast: Dynamics,” Image Algebra and Morphological Image Processing III, pp. 292-305, 1992.
[45] G. Bertrand, “On the Dynamics,” Image and Vision Computing, vol. 25, no. 4, pp. 447-454, 2007.
[46] R. Duda and P. Hart, Pattern Classification and Scene Analysis. Wiley-Interscience, 1973.
[47] R. Deriche, “Using Canny's Criteria to Derive a Recursively Implemented Optimal Edge Detector,” Int'l J. Computer Vision, vol. 1, no. 2, pp. 167-187, May 1987.
[48] P. Soille, Morphological Image Analysis. Springer, 1999.
[49] P.K. Saha, J.K. Udupa, and D. Odhner, “Scale-Based Connected Image Segmentation: Theory, Algorithms and Validation,” Computer Vision and Image Understanding, vol. 77, pp. 145-174, 2000.
[50] F. Meyer and L. Najman, “Segmentation, Arbre de Poids Minimum et Hiérarchies,” Morphologie Mathématique 1: Approaches Déterministes, Traité IC2, Série Signal et Image, Hermès Science Publications, pp. 201-232, 2008.
[51] L. Najman and M. Schmitt, “Geodesic Saliency of Watershed Contours and Hierarchical Segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 12, pp. 1163-1173, Dec. 1996.
[52] J. Cousty, G. Bertrand, L. Najman, and M. Couprie, “On Watershed Cuts and Thinnings,” Discrete Geometry for Computer Imagery, D. Coeurjolly, I. Sivignon, L. Tougne, and F. Dupont, eds., pp. 434-445, 2008.
[53] J. Serra, Image Analysis and Mathematical Morphology. Academic Press, 1988.
[54] J. Serra and L. Vincent, “An Overview of Morphological Filtering,” Circuits Systems Signal Process, vol. 11, no. 1, pp. 48-107, 1992.
[55] E. Breen and R. Jones, “Attribute Openings, Thinnings and Granulometries,” Computer Vision and Image Understanding, vol. 64, no. 3, pp. 377-389, 1996.
[56] L. Najman and M. Couprie, “Building the Component Tree in Quasi-Linear Time,” IEEE Trans. Image Processing, vol. 15, no. 11, pp. 3531-3539, 2006.
[57] J. Cousty, L. Najman, G. Bertrand, and M. Couprie, “Minimum Spanning Tree by Watershed,” in preparation.
[58] S. Beucher, “Watershed, Hierarchical Segmentation and Waterfall Algorithm,” Proc. Second Int'l Symp. Math. Morphology and Its Applications to Image Processing, pp. 69-76, 1994.
[59] F. Meyer, “The Dynamics of Minima and Contours,” Proc. Int'l Symp. Math. Morphology and Its Application to Image and Signal Processing, pp. 329-336, 1996.
44 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool