
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Anne Cuzol, Etienne Mémin, "A Stochastic Filtering Technique for Fluid Flow Velocity Fields Tracking," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 7, pp. 12781293, July, 2009.  
BibTex  x  
@article{ 10.1109/TPAMI.2008.152, author = {Anne Cuzol and Etienne Mémin}, title = {A Stochastic Filtering Technique for Fluid Flow Velocity Fields Tracking}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {31}, number = {7}, issn = {01628828}, year = {2009}, pages = {12781293}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.152}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  A Stochastic Filtering Technique for Fluid Flow Velocity Fields Tracking IS  7 SN  01628828 SP1278 EP1293 EPD  12781293 A1  Anne Cuzol, A1  Etienne Mémin, PY  2009 KW  Motion estimation KW  tracking KW  nonlinear stochastic filtering KW  fluid flows. VL  31 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] E. Arnaud and E. Mémin, “Partial Linear Gaussian Models for Tracking in Image Sequences Using Sequential Monte Carlo Methods,” Int'l J. Computer Vision, vol. 74, no. 1, pp. 75102, 2007.
[2] E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A Fluid Motion Estimator for Schlieren Imaging Velocimetry,” Proc. European Conf. Comp. Vision, May 2006.
[3] J. Barron, D. Fleet, and S. Beauchemin, “Performance of Optical Flow Techniques,” Int'l J. Computer Vision, vol. 12, no. 1, pp. 4377, 1994.
[4] G. Berkooz, P. Holmes, and J. Lumley, “The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows,” Ann. Rev. Fluid Mechanics, vol. 25, pp. 539575, 1993.
[5] M. Bossy, “Some Stochastic Particle Methods for Nonlinear Parabolic PDEs,” Proc. European Series in Applied and Industrial Math., vol. 15, pp. 1857, 2005.
[6] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics. Springer, 1988.
[7] A.J. Chorin, “Numerical Study of Slightly Viscous Flow,” J. Fluid Mechanics, vol. 57, pp. 785796, 1973.
[8] A.J. Chorin and P. Krause, “Dimensional Reduction for a Bayesian Filter,” Proc. Nat'l Academy of Sciences USA, vol. 101, no. 42, 2004.
[9] A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics. SpringerVerlag, 1993.
[10] T. Corpetti, E. Mémin, and P. Pérez, “Dense Estimation of Fluid Flows,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 365380, Mar. 2002.
[11] T. Corpetti, E. Mémin, and P. Pérez, “Extraction of Singular Points from Dense Motion Fields: An Analytic Approach,” J. Math. Imaging and Vision, vol. 19, no. 3, pp. 175198, 2003.
[12] G.H. Cottet and P. Koumoutsakos, Vortex Methods: Theory and Practice. Cambridge Univ. Press, 2000.
[13] A. Cuzol, P. Hellier, and E. Mémin, “A Low Dimensional Fluid Motion Estimator,” Int'l J. Computer Vision, vol. 75, no. 3, pp. 329349, 2007.
[14] A. Cuzol and E. Mémin, “A Stochastic Filter for Fluid Motion Tracking,” Proc. Int'l Conf. Computer Vision, Oct. 2005.
[15] A. Cuzol and E. Mémin, “Vortex and Source Particles for Fluid Motion Estimation,” Proc. Fifth Int'l Conf. ScaleSpace and PDE Methods in Computer Vision, Apr. 2005.
[16] P. Del Moral, J. Jacod, and Ph. Protter, “The MonteCarlo Method for Filtering with DiscreteTime Observations,” Probability Theory and Related Fields, vol. 120, pp. 346368, 2001.
[17] A. Doucet, S. Godsill, and C. Andrieu, “On Sequential Monte Carlo Sampling Methods for Bayesian Filtering,” Statistics and Computing, vol. 10, no. 3, pp. 197208, 2000.
[18] M. Farge, K. Schneider, and N. Kevlahan, “NonGaussianity and Coherent Vortex Simulation for TwoDimensional Turbulence Using an Adaptive Orthogonal Wavelet Basis,” Physics of Fluids, vol. 11, no. 8, pp. 21872201, 1999.
[19] G. Farnebäck, “Very High Accuracy Velocity Estimation Using Orientation Tensors, Parametric Motion, and Segmentation of the Motion Field,” Proc. Int'l Conf. Computer Vision, pp. 526, 1999.
[20] P. Héas and E. Mémin, “3D Motion Estimation of Atmospheric Layers from Image Sequences,” IEEE Trans. Geoscience and Remote Sensing, 2007.
[21] P. Héas, E. Mémin, and N. Papadakis, “TimeConsistent Estimators of 2D/3D Motion of Atmospheric Layers from Pressure Images,” Technical Report 6292, INRIA, 2007.
[22] P. Héas, E. Mémin, N. Papadakis, and A. Szantai, “Layered Estimation of Atmospheric Mesoscale Dynamics from Satellite Imagery,” IEEE Trans. Geoscience and Remote Sensing, vol. 45, no. 12, pp. 40874104, 2007.
[23] M. Isard and A. Blake, “Condensation—Conditional Density Propagation for Visual Tracking,” Int'l J. Computer Vision, vol. 29, no. 1, pp. 528, 1998.
[24] P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. SpringerVerlag, 1991.
[25] A. Leonard, “Vortex Methods for Flow Simulation,” J. Computational Physics, vol. 37, 1980.
[26] C. Marchioro and M. Pulvirenti, “Hydrodynamics in Two Dimensions and Vortex Theory,” Comm. Math. Physics, vol. 84, pp. 483503, 1982.
[27] S. Méléard, “MonteCarlo Approximations for 2D NavierStokes Equations with Measure Initial Data,” Probability Theory and Related Fields, vol. 121, no. 3, pp. 367388, 2001.
[28] R.N. Miller and L.L. Ehret, “Ensemble Generation for Models of Multimodal Systems,” Monthly Weather Rev., vol. 130, pp. 23132333, 2002.
[29] N. Papadakis and E. Mémin, “A Variational Method for Joint Tracking of Curve and Motion,” Technical Report 6283, INRIA, Sept. 2007.
[30] N. Papadakis and E. Mémin, “A Variational Technique for Time Consistent Tracking of Curves and Motion,” Int'l J. Math. Imaging and Vision, vol. 31, no. 1, pp. 81103, 2008.
[31] P. Pérez, J. Vermaak, and A. Blake, “Data Fusion for Visual Tracking,” Proc. IEEE, vol. 92, no. 3, pp. 495513, 2004.
[32] D.T. Pham, J. Verron, and M.Ch. Roubaud, “A Singular Evolutive Extended Kalman Filter for Data Assimilation in Oceanography,” J. Marine Systems, vol. 16, nos. 3/4, pp. 323340, 1998.
[33] P. Ruhnau and C. Schnoerr, “Optical Stokes Flow Estimation: An ImagingBased Control Approach,” Experiments in Fluids, vol. 42, pp. 6178, 2007.
[34] P. Ruhnau, A. Stahl, and C. Schnoerr, “OnLine Variational Estimation of Dynamical Fluid Flows with PhysicsBased SpatioTemporal Regularization,” Proc. 28th Ann. Symp. German Assoc. for Pattern Recognition, Sept. 2006.
[35] P. Ruhnau, A. Stahl, and C. Schnoerr, “Variational Estimation of Experimental Fluid Flows with PhysicsBased SpatioTemporal Regularization,” Measurement Science and Technology, vol. 18, pp.755763, 2007.
[36] J. Weickert and C. Schnoerr, “Variational OpticFlow Computation with a SpatioTemporal Smoothness Constraint,” J. Math. Imaging and Vision, vol. 14, no. 3, pp. 245255, 2001.
[37] J. Yuan, P. Ruhnau, E. Mémin, and C. Schnoerr, “Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation,” Proc. Fifth Int'l Conf. ScaleSpace and PDE Methods in Computer Vision, Apr. 2005.
[38] J. Yuan, C. Schnoerr, and E. Mémin, “Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation,” J. Math. Imaging and Vision, vol. 28, no. 1, pp. 6780, 2007.