This Article 
 Bibliographic References 
 Add to: 
3D Model Retrieval Using Probability Density-Based Shape Descriptors
June 2009 (vol. 31 no. 6)
pp. 1117-1133
Ceyhun Burak Akgül, Philips Research Europe, High Tech Campus, The Netherlands
Bülent Sankur, Boǧaziçi University, Istanbul
Yücel Yemez, Koç University, Istanbul
Francis Schmitt, Télécom ParisTech, Paris
We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The non-parametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories.

[1] S. Jayanti, K. Kalyanaraman, N. Iyer, and K. Ramani, “Developing an Engineering Shape Benchmark for CAD Models,” Computer-Aided Design, vol. 38, no. 9, pp.939-953, Sept. 2006.
[2] S. Goodall, P.H. Lewis, K. Martinez, P.A.S. Sinclair, F. Giorgini, M. Addis, M.J. Boniface, C. Lahanier, and J. Stevenson, “SCULPTEUR: Multimedia Retrieval for Museums,” Proc. Third Int'l Conf. Image and Video Retrieval, pp.638-646, 2004.
[3] P. Daras, D. Zarpalas, A. Axenopoulos, D. Tzovaras, and M.G. Strintzis, “Three-Dimensional Shape-Structure Comparison Method for Protein Classification,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 3, no. 3, pp.193-207, July-Sept. 2006.
[4] B. Bustos, D.A. Keim, D. Saupe, T. Schreck, and D.V. Vranic, “Feature-Based Similarity Search in 3D Object Databases,” ACM Computing Surveys, vol. 37, no. 4, pp.345-387, 2005.
[5] Real-Time 3D Models, http:/, 2009.
[6] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani, “Three-Dimensional Shape Searching: State-of-the-Art Review and Future Trends,” Computer-Aided Design, vol. 37, no. 5, pp.509-530, Apr. 2005.
[7] J.W.H. Tangelder and R.C. Veltkamp, “A Survey of Content Based 3D Shape Retrieval Methods,” Multimedia Tools and Applications, 2008.
[8] C.B. Akgül, B. Sankur, Y. Yemez, and F. Schmitt, “Density-Based 3D Shape Descriptors,” EURASIP J. Advances in Signal Processing, vol. 2007, Article ID 32,503, p.16, 2007, doi: 10.1155/2007/32503.
[9] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape Distributions,” ACM Trans. Graphics, vol. 21, no. 4, pp.807-832, 2002.
[10] Y. Liu, H. Zha, and H. Qin, “The Generalized Shape Distributions for Shape Matching and Analysis,” Proc. IEEE Int'l Conf. Shape Modeling and Applications, June 2006.
[11] E. Paquet and M. Rioux, “Nefertiti: A Query by Content Software for Three-Dimensional Models Databases Management,” Proc. Int'l Conf. Recent Advances in 3D Digital Imaging and Modeling, p.345, 1997.
[12] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl, “3D Shape Histograms for Similarity Search and Classification in Spatial Databases,” Proc. Sixth Int'l Symp. Advances in Spatial Databases, pp.207-226, 1999.
[13] B.K.P. Horn, “Extended Gaussian Images,” Proc. IEEE, vol. 72, pp.1671-1686, 1984.
[14] S.B. Kang and K. Ikeuchi, “The Complex EGI: A New Representation for 3D Pose Determination,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 7, pp.707-721, July 1993.
[15] T. Zaharia and F. Prêteux, “Shape-Based Retrieval of 3D Mesh Models,” Proc. IEEE Int'l Conf. Multimedia and Expo, Aug. 2002.
[16] D.W. Scott, Multivariate Density Estimation, Theory, Practice and Visualization. Wiley, 1992.
[17] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp.509-522, Apr. 2002.
[18] A. Johnson and M. Hebert, “Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes,” IEEE Trans. Pattern Analysis and Machine Intelligence vol. 21, no. 5, pp.433-449, May 1999.
[19] C.B. Akgül, B. Sankur, Y. Yemez, and F. Schmitt, “Multivariate Density-Based 3D Shape Descriptors,” Proc. Shape Modeling Int'l (SMI '07), June 2007.
[20] L. Greengard and J. Strain, “The Fast Gauss Transform,” SIAM J. Scientific and Statistical Computing, vol. 12, pp.79-94, 1991.
[21] C. Yang, R. Duraiswami, N.A. Gumerov, and L. Davis, “Improved Fast Gauss Transform and Efficient Kernel Density Estimation,” Proc. Int'l Conf. Computer Vision, vol. 1, p.464, 2003.
[22] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On Visual Similarity Based 3D Model Retrieval,” Computer Graphics Forum, vol. 22, pp.223-232, Sept. 2003.
[23] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton Shape Benchmark,” Proc. Shape Modeling Int'l, pp.167-178, 2004.
[24] D.V. Vranić, “3D Model Retrieval,” PhD dissertation, Univ. of Leipzig, 2004.
[25] D.V. Vranić, Tools for 3D Model Retrieval, 2005. http://merkur01.inf.uni-konstanz.de3Dtools /.
[26] T. Funkhouser and P. Shilane, “Partial Matching of 3D Shapes with Priority-Driven Search,” Proc. Symp. Geometry Processing, June 2006.
[27] H. Dutağaci, B. Sankur, and Y. Yemez, “Transform-Based Methods for Indexing and Retrieval of 3D Objects,” Proc. Fifth Int'l Conf. 3D Digital Imaging and Modeling, June 2005.
[28] J. Ricard, D. Coeurjolly, and A. Baskurt, “Generalizations of Angular Radial Transform for 2D and 3D Shape Retrieval,” Pattern Recognition Letters, vol. 26, no. 14, pp.2174-2186, 2005.
[29] P. Daras, D. Zarpalas, D. Tzovaras, and M.G. Strintzis, “Shape Matching Using the 3D Radon Transform,” Proc. Second Int'l Symp. 3D Data Processing, Visualization, and Transmission, pp.953-960, 2004.
[30] D. Zarpalas, P. Daras, A. Axenopoulos, D. Tzovaras, and M.G. Strintzis, “3D Model Search and Retrieval Using the Spherical Trace Transform,” EURASIP J. Advances in Signal Processing, vol. 2007, Article ID 23912, p.14, 2007, doi:10.1155/2007/23912.
[31] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors,” Proc. 2003 Eurographics/ACM SIGGRAPH Symp. Geometry Processing, pp.156-164, 2003.
[32] D.V. Vranić, “An Improvement of Rotation Invariant 3D Shape Descriptor Based on Functions on Concentric Spheres,” Proc. IEEE Int'l Conf. Image Processing, pp.757-760, Sept. 2003.
[33] S.P.P. Papadakis, I. Pratikakis, and T. Theoharis, “Efficient 3D Shape Matching and Retrieval Using a Concrete Radialized Spherical Projection Representation,” Pattern Recognition, vol. 40, no. 9, pp.2437-2452, 2007.
[34] H. Laga, H. Takahashi, and M. Nakajima, “Spherical Wavelet Descriptors for Content-Based 3D Model Retrieval“ Proc. IEEE Int'l Conf. Shape Modeling and Applications, pp.15-25, 2006.
[35] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, “Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes,” Proc. ACM SIGGRAPH, pp.203-212, Aug. 2001.
[36] T. Tung and F. Schmitt, “The Augmented Multiresolution Reeb Graph Approach for Content-Based Retrieval of 3D Shapes,” Int'l J. Shape Modeling, vol. 11, no. 1, June 2005.
[37] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton Based Shape Matching and Retrieval,” Proc. Shape Modeling Int'l, p.130, 2003.
[38] G. Taubin, “Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation,” Proc. Fifth Int'l Conf. Computer Vision, p.902, 1995.
[39] M.P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[40] C. Dorai and A.K. Jain, “COSMOS—A Representation Scheme for 3D Free-Form Objects,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 10, pp.1115-1130, Oct. 1997.
[41] W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and Semiparametric Models. Springer, 2004.
[42] D. Giorgi, S. Biasotti, and L. Paraboschi, “Shape Retrieval Contest 2007: Watertight Models Track,” R.C. Veltkamp and F.B. ter Haar, eds., SHREC 2007: 3D Shape Retrieval Contest, Technical Report UU-CS-2007-015, pp.5-10, June 2007.
[43] C.B. Akgül, B. Sankur, Y. Yemez, and F. Schmitt, “Similarity Score Fusion by Ranking Risk Minimization for 3D Object Retrieval,” Proc. Eurographics Workshop 3D Object Retrieval, Apr. 2008.
[44] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. Wiley Interscience, 2000.

Index Terms:
Shape, Nonparametric statistics, Retrieval models, Curve, surface, solid, and object representations, Feature representation, Invariants, Feature evaluation and selection
Ceyhun Burak Akgül, Bülent Sankur, Yücel Yemez, Francis Schmitt, "3D Model Retrieval Using Probability Density-Based Shape Descriptors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 1117-1133, June 2009, doi:10.1109/TPAMI.2009.25
Usage of this product signifies your acceptance of the Terms of Use.