
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tibério S. Caetano, Julian J. McAuley, Li Cheng, Quoc V. Le, Alex J. Smola, "Learning Graph Matching," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 10481058, June, 2009.  
BibTex  x  
@article{ 10.1109/TPAMI.2009.28, author = {Tibério S. Caetano and Julian J. McAuley and Li Cheng and Quoc V. Le and Alex J. Smola}, title = {Learning Graph Matching}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {31}, number = {6}, issn = {01628828}, year = {2009}, pages = {10481058}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.28}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Learning Graph Matching IS  6 SN  01628828 SP1048 EP1058 EPD  10481058 A1  Tibério S. Caetano, A1  Julian J. McAuley, A1  Li Cheng, A1  Quoc V. Le, A1  Alex J. Smola, PY  2009 KW  Graph matching KW  Learning KW  Support Vector Machines KW  Structured Estimation KW  Optimization VL  31 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] T.S. Caetano, L. Cheng, Q.V. Le, and A.J. Smola, “Learning Graph Matching,” Proc. Int'l Conf. Computer Vision, 2007.
[2] B. Schölkopf and A. Smola, Learning with Kernels. MIT Press, 2002.
[3] J. ShaweTaylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.
[4] S. Vishwanathan, K.M. Borgwardt, N. Schraudolph, and I.R. Kondor, “On Graph Kernels,” J. Machine Learning Research, submitted, 2008.
[5] A. Torsello and E.R. Hancock, “Learning ShapeClasses Using a Mixture of TreeUnions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 6, pp.954967, June 2006.
[6] D. White and R.C. Wilson, “Spectral Generative Models for Graphs,” Proc. Int'l Conf. Image Analysis and Processing, pp.3542, 2007.
[7] B. Bonev, F. Escolano, M. Lozano, P. Suau, M. Cazorla, and W. Aguilar, “Constellations and the Unsupervised Learning of Graphs,” Proc. GraphBased Representations in Pattern Recognition, pp.340350, 2007.
[8] M. Neuhaus and H. Bunke, “Automatic Learning of Cost Functions for Graph Edit Distance,” Information Sciences, vol. 177, no. 1, pp.239247, 2007.
[9] M. Leordeanu and M. Hebert, “A Spectral Technique for Correspondence Problems Using Pairwise Constraints,” Proc. Int'l Conf. Computer Vision, 2005.
[10] H. Wang and E.R. Hancock, “A Kernel View of Spectral Point Pattern Matching,” Proc. Int'l Workshops Advances in Structural and Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition, pp.361369, 2004.
[11] L. Shapiro and J. Brady, “FeatureBased Correspondence—An Eigenvector Approach,” Image and Vision Computing, vol. 10, pp.283288, 1992.
[12] M. Carcassoni and E.R. Hancock, “Spectral Correspondence for Point Pattern Matching,” Pattern Recognition, vol. 36, pp.193204, 2003.
[13] T. Caelli and S. Kosinov, “An Eigenspace Projection Clustering Method for Inexact Graph Matching,” IEEE Trans. Pattern Analayis and Machine Intelligence, vol. 26, no. 4, pp.515519, Apr. 2004.
[14] T.S. Caetano, T. Caelli, and D.A.C. Barone, “Graphical Models for Graph Matching,” Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, pp.466473, 2004.
[15] A. Rosenfeld and A.C. Kak, Digital Picture Processing. Academic Press, 1982.
[16] R.C. Wilson and E.R. Hancock, “Structural Matching by Discrete Relaxation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp.634648, June 1997.
[17] E. Hancock and R.C. Wilson, “GraphBased Methods for Vision: A Yorkist Manifesto,” Proc. Int'l Workshops Advances in Structural and Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition, pp.3146, 2002.
[18] W.J. Christmas, J. Kittler, and M. Petrou, “Structural Matching in Computer Vision Using Probabilistic Relaxation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp.749764, 1995.
[19] J.V. Kittler and E.R. Hancock, “Combining Evidence in Probabilistic Relaxation,” Int'l J. Pattern Recognition and Artificial Intelligence, vol. 3, pp.2951, 1989.
[20] S.Z. Li, “A Markov Random Field Model for Object Matching Under Contextual Constraints,” Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, pp.866869, 1994.
[21] C. Schellewald, “Convex Mathematical Programs for Relational Matching of Object Views,” PhD dissertation, Univ. of Mannhein, 2004.
[22] M. Pelillo, “Replicator Equations, Maximal Cliques, and Graph Isomorphism,” Neural Computation, vol. 11, pp.19331955, 1999.
[23] B.T. Messmer and H. Bunke, “A New Algorithm for ErrorTolerant Subgraph Isomorphism Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 5, pp.493503, May 1998.
[24] S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm for Graph Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 4, pp.377388, Apr. 1996.
[25] M. van Wyk, T. Durrani, and B. van Wyk, “A RKHS InterpolatorBased Graph Matching Algorithm,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp.988995, July 2002.
[26] A. Rangarajan, A. Yuille, and E. Mjolsness, “Convergence Properties of the Softassign Quadratic Assignment Algorithm,” Neural Computation, vol. 11, pp.14551474, 1999.
[27] R. Sinkhorn, “A Relationship between Arbitrary Positive Matrices and Doubly Stochastic Matrices,” Annals Math. and Statistics, vol. 35, pp.876879, 1964.
[28] M. Pelillo and M. Refice, “Learning Compatibility Coefficients for Relaxation Labeling Processes,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 9, pp.933945, Sept. 1994.
[29] S. LacosteJulien, B. Taskar, D. Klein, and M. Jordan, “Word Alignment Via Quadratic Assignment,” Proc. North Am. Chapter Assoc. for Computational LinguisticsHuman Language Technologies, 2006.
[30] T. Cour, P. Srinivasan, and J. Shi, “Balanced Graph Matching,” Proc. Conf. Neural Information Processing Systems, 2006.
[31] K. Anstreicher, “Recent Advances in the Solution of Quadratic Assignment Problems,” Math. Programming, Ser. B, vol. 97, pp.2742, 2003.
[32] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Dover Publications, July 1998.
[33] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large Margin Methods for Structured and Interdependent Output Variables,” J. Machine Learning Research, vol. 6, pp.14531484, 2005.
[34] R.K. Ahuja and J.B. Orlin, “Inverse Optimization,” Operations Research, vol. 49, no. 5, pp.771783, 2001.
[35] A. Smola, S.V.N. Vishwanathan, and Q. Le, “Bundle Methods for Machine Learning,” Proc. Advances in Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, eds., pp.13771384, 2008.
[36] B. Taskar, C. Guestrin, and D. Koller, “MaxMargin Markov Networks” Proc. Advances in Neural Information Processing Systems 16, S.Thrun, L. Saul, and B. Schölkopf, eds., 2004.
[37] T. Joachims, “Training Linear SVMs in Linear Time,” Proc. Knowledge Discovery and Data Mining, 2006.
[38] C. Teo, Q. Le, A. Smola, and S. Vishwanathan, “A Scalable Modular Convex Solver for Regularized Risk Minimization,” Proc. Knowledge Discovery and Data Mining, 2007.
[39] R. Jonker and A. Volgenant, “A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems,” Computing, vol. 38, no. 4, pp.325340, 1987.
[40] T. Finley and T. Joachims, “Training Structural SVMs when Exact Inference Is Intractable,” Proc. Int'l Conf. Machine Learning, 2008.
[41] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp.509521, Apr. 2002.
[42] CMU “house” data set, http://vasc.ri.cmu.edu/idb/html/motion/house index.html, 2009.
[43] T.S. Caetano, T. Caelli, D. Schuurmans, and D.A.C. Barone, “Graphical Models and Point Pattern Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp.16461663, Oct. 2006.
[44] A.M. Bronstein, M.M. Bronstein, and R. Kimmel, Numerical Geometry of NonRigid Shapes. Springer, 2007.
[45] A.M. Bronstein, M.M. Bronstein, A.M. Bruckstein, and R. Kimmel, “Analysis of TwoDimensional NonRigid Shapes,” Int'l J. Computer Vision, 2007.
[46] Mythological Creatures 2D database, http:/tosca.cs.technion. ac.il, 2009.
[47] SAMPL motion data set, http://sampl.ece.ohiostate.edudatabase.htm , 2009.
[48] S. Smith, “A New Class of Corner Finder,” Proc. British Machine Vision Conf., pp.139148, 1992.
[49] S. Smith, “Flexible Filter Neighbourhood Designation,” Proc. Int'l Conf. Pattern Recognition, pp.206212, 1996.
[50] G. Griffin, A. Holub, and P. Perona, “Caltech256 Object Category Data Set,” Technical Report 7694, California Institute of Tech nology, http://authors.library.caltech.edu7694, 2007.