CSDL Home IEEE Transactions on Pattern Analysis & Machine Intelligence 2009 vol.31 Issue No.04 - April

Subscribe

Issue No.04 - April (2009 vol.31)

pp: 637-648

Michel Couprie , Université Paris-Est, LABINFO-IGM, UMR CNRS, Noisy-Le-Grand

Gilles Bertrand , Université Paris-Est, LABINFO-IGM, UMR CNRS, Noisy-Le-Grand

ABSTRACT

A point of a discrete object is called simple if it can be deleted from this object without altering topology. In this article, we present new characterizations of simple points which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting such points. In order to prove these characterizations, we establish two confluence properties of the collapse operation which hold in the neighborhood of a point in spaces of low dimension. This work is settled in the framework of cubical complexes, which provides a sound topological basis for image analysis, and allows to retrieve the main notions and results of digital topology, in particular the notion of simple point.

INDEX TERMS

Image Processing and Computer Vision, Pattern Recognition

CITATION

Michel Couprie, Gilles Bertrand, "New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces",

*IEEE Transactions on Pattern Analysis & Machine Intelligence*, vol.31, no. 4, pp. 637-648, April 2009, doi:10.1109/TPAMI.2008.117REFERENCES

- [2] G. Bertrand, “On P-Simple Points,”
Comptes Rendus de l'Académie des Sciences, Série Math., vol. 1, no. 321, pp. 1077-1084, 1995.- [3] G. Bertrand, “On Critical Kernels,”
Comptes Rendus de l'Académie des Sciences, Série Math., vol. 1, no. 345, pp. 363-367, 2007.- [4] G. Bertrand and M. Couprie, “A New 3D Parallel Thinning Scheme Based on Critical Kernels,”
Discrete Geometry for Computer Imagery, pp. 580-591, Springer, 2006.- [6] G. Bertrand, M. Couprie, and N. Passat,
3-D Simple Points and Simple-Equivalence, submitted for publication. - [8] R.H. Bing, “Some Aspects of the Topology of 3-Manifolds Related to the Poincaré Conjecture,”
Lectures on Modern Math., vol. 2, pp.93-128, 1964.- [9] M. Couprie, “A Counter-Example to a Confluence Property in a 5D Cell,” technical report, ESIEE, http://www.esiee.fr/~coupriem/ckX105, 2008.
- [10] M. Couprie and G. Bertrand, “New Characterizations, in the Framework of Critical Kernels, of 2D, 3D, and 4D Minimal Non-Simple Sets and P-Simple Points,” Technical Report IGM2007-08, Univ. de Marne-la-Vallée, 2007, submitted for publication.
- [11] M. Couprie and G. Bertrand, “New Characterizations of Simple Points, Minimal Non-Simple Sets and P-Simple Points in 2D, 3D, and 4D Discrete Spaces,”
Discrete Geometry for Computer Imagery, D. Coeurjolly et al., eds., pp. 105-116, Springer, 2008.- [12] J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, and J. Garot, “Automated, Accurate and Fast Segmentation of 4D Cardiac MR Images,”
Proc. Fourth Int'l Conf. Functional Imaging and Modeling of the Heart, pp. 474-483, 2007.- [14] O. Duda, P.E. Hart, and J.H. Munson, “Graphical Data Processing Research Study and Experimental Investigation,” Technical Report AD650926, Stanford Research Inst., 1967.
- [15] P. Giblin,
Graphs, Surfaces and Homology. Chapman and Hall, 1981.- [17] T.Y. Kong, “On Topology Preservation in 2-D and 3-D Thinning,”
Int'l J. Pattern Recognition and Artificial Intelligence, vol. 9, pp. 813-844, 1995.- [18] T.Y. Kong, “Topology-Preserving Deletion of 1's from 2-, 3-, and 4-Dimensional Binary Images,”
Discrete Geometry for Computer Imagery, pp. 3-18, Springer, 1997.- [20] T.Y. Kong, “On the Problem of Determining Whether a Parallel Reduction Operator for $N\hbox{-}{\rm Dimensional}$ Binary Images Always Preserves Topology,”
Proc. SPIE Vision Geometry II, pp. 69-77, 1993.- [23] N. Passat, M. Couprie, and G. Bertrand, “Minimal Simple Pairs in the 3-D Cubic Grid,” Technical Report IGM2007-04, Univ. de Marne-la-Vallée, 2007.
- [25] A. Rosenfeld, “Connectivity in Digital Pictures,”
J. ACM, vol. 17, pp. 146-160, 1970.- [28] E.C. Zeeman,
Seminar on Combinatorial Topology. IHES, 1963.- [29] E.C. Zeeman, “On the Dunce Hat,”
Topology, vol. 2, pp. 341-358, 1964. |