
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
PierreFrançois Marteau, "Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 306318, February, 2009.  
BibTex  x  
@article{ 10.1109/TPAMI.2008.76, author = {PierreFrançois Marteau}, title = {Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {31}, number = {2}, issn = {01628828}, year = {2009}, pages = {306318}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.76}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching IS  2 SN  01628828 SP306 EP318 EPD  306318 A1  PierreFrançois Marteau, PY  2009 KW  Pattern recognition KW  time series KW  algorithms KW  similarity measures. VL  31 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 11th IEEE Int'l Conf. Data Eng., pp. 314, 1995.
[2] R. Bellman, Dynamic Programming. Princeton Univ. Press, 1957.
[3] E. Chàvez, G. Navarro, R.A. BaezaYates, and J.L. Marroquin, “Searching in Metric Spaces,” ACM Computing Surveys, vol. 33, no. 3, pp. 273321, 2001.
[4] L. Chen and R. Ng, “On the Marriage of LPNorm and Edit Distance,” Proc. Int'l Conf. Very Large Data Bases, pp. 792801, 2004.
[5] L. Chen, M.T. Ozsu, and V. Oria, “Robust and Fast Similarity Search for Moving Object Trajectories,” Proc. Int'l Conf. Management of Data (SIGMOD '05), pp. 491502, 2005.
[6] G. Das, D. Gunopulos, and H. Mannila, “Finding Similar Time Series,” Proc. Conf. Principles of Knowledge Discovery and Data Mining, pp. 454456, 1997.
[7] D.H. Douglas and T.K. Peucker, “Algorithm for the Reduction of the Number of Points Required to Represent a Line or Its Caricature,” The Canadian Cartographer, vol. 10, no. 2, pp. 112122, 1973.
[8] R. Durbin, S. Eddy, A. Krogh, and G. Mitchinson, Biological Sequence Analysis—Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press, 1998.
[9] E. Fink and B. Pratt, “Indexing of Compressed Time Series,” Data Mining in Time Series Databases, pp. 4365, World Scientific, 2004.
[10] O. Gotoh, “An Improved Algorithm for Matching Biological Sequences,” J. Molecular Biology, vol. 162, pp. 705708, 1982.
[11] D.S. Hirschberg, “A Linear Space Algorithm for Computing Maximal Common Subsequences,” Comm. ACM, vol. 18, no. 6, pp.341343, 1975.
[12] H. Imai and M. Iri, “Polygonal Approximations of a Curve— Formulations and Algorithms,” Computational Morphology, pp. 7186, 1988.
[13] E.J. Keogh, K. Chakrabarti, M.J. Pazzani, and S. Mehrotra, “Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases,” J. Knowledge and Information Systems, vol. 3, pp. 263286, 2001.
[14] E.J. Keogh and M.J. Pazzani, “A Simple Dimensionality Reduction Technique for Fast Similarity Search in Large Time Series Databases,” Proc. Fourth PacificAsia Conf. Knowledge Discovery and Data Mining (PAKDD '00), pp. 122133, 2000.
[15] E.J. Keogh, L. Wei, X. Xi, S.H. Lee, and M. Vlachos, “Lb_keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures,” Proc. ACM Int'l Conf. Very Large Databases, pp. 882893, 2006.
[16] E.J. Keogh, X. Xi, L. Wei, and C.A. Ratanamahatana, The UCR Time Series ClassificationClustering Datasets, http://wwwcs.ucr.edu/ eamonntime_series_data /, 2006.
[17] A. Kolesnikov and P. Fränti, “ReducedSearch Dynamic Programming for Approximation of Polygonal Curves,” Pattern Recognition Letters, vol. 24, pp. 22432254, 2003.
[18] V.I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 707710, 1966 (in Russian), english translation in Soviet Physics Doklady, vol. 10, no. 8, pp. 845848, 1965.
[19] J. Lin, E.J. Keogh, and A.F. van Herie, “Approximations to Magic: Finding Unusual Medical Time Series,” Proc. 18th IEEE Int'l Symp. ComputerBased Medical Systems, pp. 329334, 2005.
[20] V. Mäkinen, “Using Edit Distance in PointPattern Matching,” Proc. Eighth Symp. String Processing and Information Retrieval (SPIRE '01), pp. 153161, 2001.
[21] V. Mäkinen, “Parameterized Approximate String Matching and LocalSimilarityBased PointPattern Matching,” PhD dissertation, Report A2003, Dept. of Computer Science, Univ. of Helsinki, 2003.
[22] P.F. Marteau, “Time Warp Edit Distance,” Technical Report valoria/UBS20083v, VALORIA, Univ. de Bretagne Sud, http://hal.archivesouvertes.fr/hal00258669 fr/, 2008.
[23] P.F. Marteau and S. Gibet, “Adaptive Sampling of Motion Trajectories for Discrete TaskBased Analysis and Synthesis of Gesture,” Proc. Int'l Gesture Workshop, pp. 224235, 2005.
[24] P.F. Marteau and G. Ménier, “Speeding up Simplification of Polygonal Curves Using Nested Approximations,” J. Pattern Analysis and Application, pp. 18, Springer, June 2008, http://dx.doi.org.10.1007s100440080133y .
[25] P. Moore and D. Molloy, “A Survey of ComputerBased Deformable Models,” Proc. Int'l Machine Vision and Image Processing Conf. (IMVIP '07), pp. 5564, 2007.
[26] S.B. Needleman and C.D. Wunsch, “A General Method Applicable to the Search for Similarities in the Amino Acid Sequences of Two Proteins,” J. Molecular Biology, vol. 48, pp. 443453, 1970.
[27] M.K. Ng and Z. Huang, Temporal Data Mining with a Case Study as Astronomical Data Analysis, LNCS, pp. 218, 1997.
[28] S. Park, J.I. Won, J.H. Yoonc, and S.W. Kimb, “A MultiDimensional Indexing Approach for Timestamped Event Sequence Matching,” Information Sciences, vol. 177, pp. 48594876, 2007.
[29] J.C. Perez and E. Vidal, “Optimum Polygonal Approximation of Digitized Curves,” Pattern Recognition Letters, vol. 15, pp. 743750, 1994.
[30] C.A. Ratanamahatana and E.J. Keogh, “Making TimeSeries Classification More Accurate Using Learned Constraints,” Proc. Fourth SIAM Int'l Conf. Data Mining (SDM '04), pp. 1122, 2004.
[31] H. Sakoe and S. Chiba, “A Dynamic Programming Approach to Continuous Speech Recognition,” Proc. Seventh Int'l Congress of Acoustic, pp. 6568, 1971.
[32] A. Singh, D. Terzopoulos, and D.B. Goldgof, Deformable Models in Medical Image Analysis. IEEE CS Press, 1998.
[33] V.M. Velichko and N.G. Zagoruyko, “Automatic Recognition of 200 Words,” Int'l J. ManMachine Studies, vol. 2, pp. 223234, 1970.
[34] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E.J. Keogh, “Indexing MultiDimensional TimeSeries with Support for Multiple Distance Measures,” Proc. ACM Special Interest Group Knowledge Discovery and Data Mining (SIGKDD '03), pp. 216225, 2003.
[35] R.A. Wagner and M.J. Fischer, “The StringtoString Correction Problem,” J. ACM, vol. 21, pp. 168173, 1973.
[36] H. Wang, C. Perng, W. Fan, S. Park, and P. Yu, “Indexing Weighted Sequences in Large Databases,” Proc. IEEE Int'l Conf. Data Eng., pp. 6374, 2003.
[37] H. Wu, B. Salzberg, and D. Zhang, “Online EventDriven Subsequence Matching over Financial Data Streams,” Proc. Int'l Conf. Management of Data (SIGMOD '04), pp. 2334, 2004.