
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Wim H. Hesselink, Jos B.T.M. Roerdink, "Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 12, pp. 22042217, December, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2008.21, author = {Wim H. Hesselink and Jos B.T.M. Roerdink}, title = {Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {12}, issn = {01628828}, year = {2008}, pages = {22042217}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.21}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform IS  12 SN  01628828 SP2204 EP2217 EPD  22042217 A1  Wim H. Hesselink, A1  Jos B.T.M. Roerdink, PY  2008 KW  Curve KW  surface KW  solid KW  and object representations KW  Image Representation KW  Edge and feature detection KW  Feature representation KW  Shape KW  Volume visualization VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] J.L. Pfaltz and A. Rosenfeld, “Computer Representation of Planar Regions by Their Skeletons,” Comm. ACM, vol. 10, pp. 119125, 1972.
[2] A. Webb, Statistical Pattern Recognition. Ar nold, 1999.
[3] J.R. Parker, Algorithms for Image Processing and Computer Vision. John Wiley & Sons, 1996.
[4] S. Beucher, “Digital Skeletons in Euclidean and Geodesic Spaces,” Signal Processing, vol. 38, pp. 127141, 1994.
[5] P. Maragos and R.W. Schafer, “Morphological Skeleton Representation and Coding of Binary Images,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 34, pp. 12281244, 1986.
[6] F. Meyer, “The Binary Skeleton in Three Steps,” Proc. IEEE Workshop Computer Architecture and Image Database Management, pp. 477483, 1985.
[7] J. Serra, Image Analysis and Mathematical Morphology. Academic Press, 1982.
[8] H. Talbot and L. Vincent, “Euclidean Skeletons and Conditional Bisectors,” Proc. SPIE Visual Comm. and Image Processing, pp. 862876, Nov. 1992.
[9] L. Vincent, “Efficient Computation of Various Types of Skeletons,” Proc. SPIE Symp. Medical Imaging, pp. 297311, Feb. 1991.
[10] F.Y. Shih and C.C. Pu, “A Skeletonization Algorithm by Maxima Tracking on Euclidean Distance Transform,” Pattern Recognition, vol. 28, no. 3, pp. 331341, 1995.
[11] H. Blum, “A Transformation for Extracting New Descriptors of Shape,” Proc. Symp. Models for the Perception of Speech and Visual Form, W. WathenDunn, ed., pp. 362380, 1967.
[12] P.E. Danielsson, “Euclidean Distance Mapping,” Computer Graphics and Image Processing, vol. 14, pp. 227248, 1980.
[13] G. Borgefors, I. Nystrom, and G.S.D. Baja, “Computing Skeletons in Three Dimensions,” Pattern Recognition, vol. 32, no. 7, pp. 12251236, 1999.
[14] Y. Ge and J. Fitzpatrick, “On the Generation of Skeletons from Discrete Euclidean Distance Maps,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, pp. 10551066, 1996.
[15] T. Hirata, “A Unified LinearTime Algorithm for Computing Distance Maps,” Information Processing Letters, vol. 58, pp. 129133, 1996.
[16] A. Meijster, J.B.T.M. Roerdink, and W.H. Hesselink, “A General Algorithm for Computing Distance Transforms in Linear Time,” Math. Morphology and Its Applications to Image and Signal Processing, J. Goutsias, L. Vincent, and D.S. Bloomberg, eds., pp. 331340, Kluwer Academic, 2000.
[17] C.R. Maurer Jr., R. Qi, and V. Raghavan, “A Linear Time Algorithm for Computing the Euclidean Distance Transform in Arbitrary Dimensions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 2, pp. 265270, Feb. 2003.
[18] C.R. Maurer Jr., V. Raghavan, and R. Qi, “A Linear Time Algorithm for Computing the Euclidean Distance Transform in Arbitrary Dimensions,” Information Processing in Medical Imaging, pp. 358364, 2001.
[19] W.H. Hesselink, M. Visser, and J.B.T.M. Roerdink, “Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform,” Math. Morphology: 40 Years On, Proc. Seventh Int'l Symp. Math. Morphology. C. Ronse, L. Najman, and E. Decencière, eds., pp. 259268, 2005.
[20] D. Attali and A. Montanvert, “Computing and Simplifying 2D and 3D Continuous Skeletons,” Computer Vision and Image Understanding, vol. 67, no. 3, pp. 161273, 1997.
[21] R. Strzodka and A. Telea, “Generalized Distance Transforms and Skeletons in Graphics Hardware,” Proc. Eurographics IEEE TCVG Symp. Visualization, pp. 221230, 2004.
[22] E. Remy and E. Thiel, “LookUp Tables for Medial Axis on Squared Euclidean Distance Transform,” Proc. Int'l Conf. Discrete Geometry for Computer Imagery, pp. 224235, 2003.
[23] T.Y. Kong and A. Rosenfeld, “Digital Topology: Introduction and Survey,” Computer Vision, Graphics and Image Processing, vol. 48, no. 3, pp. 357393, 1989.
[24] W.H. Hesselink, “A LinearTime Algorithm for Euclidean Feature Transform Sets,” Information Processing Letters, vol. 102, pp. 181186, 2007.
[25] D. Coeurjolly, “$d\hbox{}{\rm Dimensional}$ Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time,” Proc. Int'l Conf. Discrete Geometry for Computer Imagery, pp.327337, 2003.
[26] M. Couprie and R. Zrour, “Discrete Bisector Function and Euclidean Skeleton,” Discrete Geometry for Computer Imagery, E.Andres, G. Damiand, and P. Lienhardt, eds., pp. 216227, Springer, 2005.
[27] W. van der Kallen, “Integral Medial Axis and the Distance between Closest Points,” Regular and Chaotic Dynamics, vol. 12, no. 6, pp. 734743, 2007.
[28] R.A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,” Computer Graphics (Proc. SIGGRAPH '88), vol. 22, no. 4, pp.6574, 1988.
[29] A. Telea and J.J. van Wijk, “An Augmented Fast Marching Method for Computing Skeletons and Centerlines,” Proc. Eurographics— IEEE TCVG Symp. Data Visualization, D. Ebert, P. Brunet, and I.Navazo, eds., pp. 251ff, 2002.