
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Qingping Tao, Stephen D. Scott, N. V. Vinodchandran, Thomas Takeo Osugi, Brandon Mueller, "Kernels for Generalized MultipleInstance Learning," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 12, pp. 20842098, December, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2007.70846, author = {Qingping Tao and Stephen D. Scott and N. V. Vinodchandran and Thomas Takeo Osugi and Brandon Mueller}, title = {Kernels for Generalized MultipleInstance Learning}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {12}, issn = {01628828}, year = {2008}, pages = {20842098}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.70846}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Kernels for Generalized MultipleInstance Learning IS  12 SN  01628828 SP2084 EP2098 EPD  20842098 A1  Qingping Tao, A1  Stephen D. Scott, A1  N. V. Vinodchandran, A1  Thomas Takeo Osugi, A1  Brandon Mueller, PY  2008 KW  Machine learning KW  kernels KW  support vector machines KW  generalized multipleinstance learning VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] Q. Tao , S. Scott , N.V. Vinodchandran , and T. Osugi , “SVMBased Generalized MultipleInstance Learning via Approximate Box Counting,” Proc. 21st Int'l Conf. Machine Learning, pp. 799806, 2004.
[2] Q. Tao , S. Scott , N.V. Vinodchandran , T. Osugi , and B. Mueller , “An Extended Kernel for Generalized MultipleInstance Learning,” Proc. 16th IEEE Int'l Conf. Tools with Artificial Intelligence, pp.272277, 2004.
[3] T.G. Dietterich , R.H. Lathrop , and T. LozanoPerez , “Solving the MultipleInstance Problem with AxisParallel Rectangles,” Artificial Intelligence, vol. 89, nos. 12, pp. 3171, 1997.
[4] O. Maron and A.L. Ratan , “MultipleInstance Learning for Natural Scene Classification,” Proc. 15th Int'l Conf. Machine Learning, pp. 341349, 1998.
[5] Q. Zhang , S.A. Goldman , W. Yu , and J.E. Fritts , “ContentBased Image Retrieval Using MultipleInstance Learning,” Proc. 19th Int'l Conf. Machine Learning, pp. 682689, 2002.
[6] Y. Chen and J.Z. Wang , “Image Categorization by Learning and Reasoning with Regions,” J. Machine Learning Research, vol. 5, pp.913939, Aug. 2004.
[7] Z. Zhou , M. Zhang , and K. Chen , “A Novel Bag Generator for Image Database Retrieval with MultiInstance Learning Techniques,” Proc. 15th IEEE Int'l Conf. Tools with Artificial Intelligence, pp. 565569, 2003.
[8] C. Yang and T. LozanoPérez , “Image Database Retrieval with MultipleInstance Learning Techniques,” Proc. 16th Int'l Conf. Data Eng., pp. 233243, 2000.
[9] S. Scott , J. Zhang , and J. Brown , “On Generalized MultipleInstance Learning,” Int'l J. Computational Intelligence and Applications, vol. 5, no. 1, pp. 2135, Mar. 2005.
[10] S.A. Goldman , S.K. Kwek , and S.D. Scott , “Agnostic Learning of Geometric Patterns,” J. Computer and System Sciences, vol. 6, no. 1, pp. 123151, Feb. 2001.
[11] N. Littlestone , “Learning Quickly When Irrelevant Attributes Abound: A New LinearThreshold Algorithm,” Machine Learning, vol. 2, no. 4, pp. 285318, 1988.
[12] Q. Tao and S. Scott , “A Faster Algorithm for Generalized MultipleInstance Learning,” Proc. 17th Int'l Florida Artificial Intelligence Research Soc. Conf., pp. 550555, 2004.
[13] B. Schölkopf , Support Vector Learning. R. Oldenbourg Verlag, 1997.
[14] T. Haasdonk , “Feature Space Interpretation of SVMs with Indefinite Kernels,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 482492, Apr. 2005.
[15] N. Weidmann , E. Frank , and B. Pfahringer , “A TwoLevel Learning Method for Generalized MultiInstance Problems,” Proc. European Conf. Machine Learning, pp. 468479, 2003.
[16] S. Andrews , I. Tsochantaridis , and T. Hofmann , “Support Vector Machines for MultipleInstance Learning,” Advances in Neural Information Processing Systems, vol. 15, pp. 561568, 2002.
[17] C. Papadimitriou , Computational Complexity. AddisonWesley, 1994.
[18] D. Du and K. Ko , Theory of Computational Complexity. John Wiley & Sons, 2000.
[19] P. Auer , “On Learning from MultiInstance Examples: Empirical Evaluation of a Theoretical Approach,” Proc. 14th Int'l Conf. Machine Learning, pp. 2129, 1997.
[20] O. Maron and T. LozanoPérez , “A Framework for MultipleInstance Learning,” Advances in Neural Information Processing Systems, vol. 10, pp. 570576, 1998.
[21] P.M. Long and L. Tan , “PAC Learning AxisAligned Rectangles with Respect to Product Distributions from MultipleInstance Examples,” Machine Learning, vol. 30, pp. 721, 1998.
[22] A. Blum and A. Kalai , “A Note on Learning from MultipleInstance Examples,” Machine Learning, vol. 30, pp. 2329, 1998.
[23] J. Wang and J.D. Zucker , “Solving the MultipleInstance Problem: A Lazy Learning Approach,” Proc. 17th Int'l Conf. Machine Learning, pp. 11191125, 2000.
[24] Q. Zhang and S.A. Goldman , “EMDD: An Improved MultipleInstance Learning Technique,” Neural Information Processing Systems, vol. 14, pp. 10731080, 2001.
[25] J. Ramon and L. de Raedt , “Multi Instance Neural Networks,” Proc. ICML Workshop AttributeValue and Relational Learning, 2000.
[26] P. Auer , P.M. Long , and A. Srinivasan , “Approximating HyperRectangles: Learning and PseudoRandom Sets,” Proc. 29th Ann. ACM Symp. Theory of Computing, pp. 314323, 1997.
[27] H. Blockeel , D. Page , and A. Srinivasan , “MultiInstance Tree Learning,” Proc. 22nd Int'l Conf. Machine Learning, pp. 5764, 2005.
[28] P. Auer and R. Ortner , “A Boosting Approach to Multiple Instance Learning,” Proc. 15th European Conf. Machine Learning, pp. 6374, 2004.
[29] T. Gärtner , P.A. Flach , A. Kowalczyk , and A.J. Smola , “MultiInstance Kernels,” Proc. 19th Int'l Conf. Machine Learning, pp. 179186, 2002.
[30] D.R. Dooly , Q. Zhang , S.A. Goldman , and R.A. Amar , “MultipleInstance Learning of RealValued Data,” J. Machine Learning Research, vol. 3, pp. 651678, Dec. 2002.
[31] S. Ray and D. Page , “Multiple Instance Regression,” Proc. 18th Int'l Conf. Machine Learning, pp. 425432, 2001.
[32] S. Ray and M. Craven , “Supervised versus MultipleInstance Learning: An Empirical Comparison,” Proc. 22nd Int'l Conf. Machine Learning, pp. 697704, 2005.
[33] L. De Raedt , “AttributeValue Learning versus Inductive Logic Programming: The Missing Links,” Proc. Eighth Int'l Conf. Inductive Logic Programming, pp. 18, 1998.
[34] Y. Chen , J. Bi , and J.Z. Wang , “MILES: MultipleInstance Learning via Embedded Instance Selection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 19311947, Dec. 2006.
[35] W. Maass and M.K. Warmuth , “Efficient Learning with Virtual Threshold Gates,” Information and Computation, vol. 141, no. 1, pp.6683, 1998.
[36] N. Littlestone , “Redundant Noisy Attributes, Attribute Errors, and Linear Threshold Learning Using Winnow,” Proc. Fourth Ann. Workshop Computational Learning Theory, pp. 147156, 1991.
[37] F. Rosenblatt , “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psychological Rev., vol. 65, pp. 386407, 1958 (reprinted in Neurocomputing (MIT Press, 1988)).
[38] V. Vapnik , Statistical Learning Theory, John Wiley & Sons, 1998.
[39] N. Cristianini and J. ShaweTaylor , An Introduction to Support Vector Machines and Other KernelBased Learning Methods. Cambridge Univ. Press, 2000.
[40] B. Schölkopf and A.J. Smola , Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
[41] M. Warmuth and S.V.N. Vishwanathan , “Leaving the Span,” Proc. 18th Ann. Conf. Learning Theory, pp. 366381, 2005.
[42] R. Khardon , D. Roth , and R. Servedio , “Efficiency versus Convergence of Boolean Kernels for Online Learning Algorithms,” J. Artificial Intelligence Research, vol. 24, pp. 341356, Sept. 2005.
[43] R. Khardon and R. Servedio , “Maximum Margin Algorithms with Boolean Kernels,” J. Machine Learning Research, vol. 6, pp. 14051429, 2005.
[44] T. Zhang , “Regularized Winnow Methods,” Advances in Neural Information Processing Systems, pp. 703709, 2000.
[45] E. Takimoto and M.K. Warmuth , “Path Kernels and Multiplicative Updates,” J. Machine Learning Research, vol. 4, pp. 773818, 2003.
[46] L.G. Valiant , “The Complexity of Enumeration and Reliability Problems,” SIAM J. Computing, vol. 8, pp. 410421, 1979.
[47] R. Karp , M. Luby , and N. Madras , “MonteCarlo Approximation Algorithms for Enumeration Problems,” J. Algorithms, vol. 10, pp.429448, 1989.
[48] B. Schölkopf , J. Weston , E. Eskin , C. Leslie , and W.S. Noble , “A Kernel Approach for Learning from Almost Orthogonal Patterns,” Proc. 13th European Conf. Machine Learning, pp. 511528, 2002.
[49] T. Joachims , “Making LargeScale SVM Learning Practical,” Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, eds., chapter 11, pp. 169184, MIT Press, 1999.
[50] I. Daubechies , “Orthonormal Bases of Compactly Supported Wavelets,” Comm. Pure and Applied Math., vol. 41, pp. 909996, 1988.
[51] J.A. Hartigan and M.A. Wong , “Algorithm AS136: A KMeans Clustering Algorithm,” Applied Statistics, vol. 28, pp. 100108, 1979.
[52] J.Z. Wang , J. Li , and G. Wiederhold , “SIMPLIcity: SemanticsSensitive Integrated Matching for Picture Libraries,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 947963, Sept. 2001.
[53] C. Wang , S. Scott , J. Zhang , Q. Tao , D.E. Fomenko , and V.N. Gladyshev , “A Study in Modeling LowConservation Protein Superfamilies,” Technical Report TRUNLCSE20043, Dept. of Computer Science, Univ. of Nebraska, 2004.
[54] J. Kim , E.N. Moriyama , C.G. Warr , P.J. Clyne , and J.R. Carlson , “Identification of Novel MultiTransmembrane Proteins from Genomic Databases Using QuasiPeriodic Structural Properties,” Bioinformatics, vol. 16, no. 9, pp. 767775, 2000.
[55] D.M. Engelman , T.A. Steitz , and A. Goldman , “Identifying NonPolar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins,” Ann. Rev. Biophysics and Biophysical Chemistry, vol. 15, pp. 321353, 1986.
[56] G.V. Heijne , “Membrane Protein Structure Prediction: Hydrophobicity Analysis and the PositiveInside Rule,” J. Molecular Biology, vol. 225, pp. 487494, 1992.
[57] T. Brown , Molecular Biology Labfax, second ed. Academic Press, 1998.
[58] J. Kyte and R.F. Doolittle , “A Simple Method for Displaying the Hydropathic Character of a Protein,” J. Molecular Biology, vol. 157, pp. 105132, 1982.
[59] G. Deleage and B. Roux , “An Algorithm for Protein Secondary Structure Prediction Based on Class Prediction,” Protein Eng., vol. 1, pp. 289294, 1987.