
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Fredrik Kahl, Richard Hartley, "MultipleView Geometry Under the {$L_\infty$}Norm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 9, pp. 16031617, September, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2007.70824, author = {Fredrik Kahl and Richard Hartley}, title = {MultipleView Geometry Under the {$L_\infty$}Norm}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {9}, issn = {01628828}, year = {2008}, pages = {16031617}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.70824}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  MultipleView Geometry Under the {$L_\infty$}Norm IS  9 SN  01628828 SP1603 EP1617 EPD  16031617 A1  Fredrik Kahl, A1  Richard Hartley, PY  2008 KW  Image Processing and Computer Vision KW  Convex programming KW  Constrained optimization KW  Global optimization VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] S. Agarwal, M.K. Chandraker, F. Kahl, D.J. Kriegman, and S. Belongie, “Practical Global Optimization for Multiview Geometry,” Proc. Ninth European Conf. Computer Vision, pp. 592605, 2006.
[2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
[3] A. Fusiello, A. Benedetti, M. Farenzena, and A. Busti, “Globally Convergent Autocalibration Using Interval Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 12, pp. 16331638, Dec. 2004.
[4] V.M. Govindu, “LieAlgebraic Averaging for Globally Consistent Motion Estimation,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 684691, 2004.
[5] R. Hartley and F. Schaffalitzky, “${\rm L}_{\infty}$ Minimization in Geometric Reconstruction Problems,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 504509, 2004.
[6] R.I. Hartley, “Defense of the EightPoint Algorithm,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580593, June 1997.
[7] R.I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understanding, vol. 68, no. 2, pp. 146157, Nov. 1997.
[8] R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, second ed. Cambridge Univ. Press, 2004.
[9] A. Heyden, “Projective Structure and Motion from Image Sequences Using Subspace Methods,” Proc. 10th Scandinavian Conf. Image Analysis, pp. 963968, 1997.
[10] F. Kahl, “Multiple View Geometry and the $L_{\infty}\hbox{}{\rm Norm}$ ,” Proc. 10th Int'l Conf. Computer Vision, pp. 10021009, 2005.
[11] F. Kahl and D. Henrion, “Globally Optimal Estimates for Geometric Reconstruction Problems,” Proc. 10th Int'l Conf. Computer Vision, pp. 978985, 2005.
[12] Q. Ke and T. Kanade, “Quasiconvex Optimization for Robust Geometric Reconstruction,” Proc. 10th Int'l Conf. Computer Vision, pp. 986993, 2005.
[13] Q. Ke and T. Kanade, “Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 11991205, 2006.
[14] M.S. Lobo, L. Vandenberghe, S.P. Boyd, and H. Lebret, “Applications of SecondOrder Cone Programming,” Linear Algebra and Its Applications, vol. 284, pp. 193228, 1998.
[15] H.C. LonguetHiggins, “A Computer Algorithm for Reconstructing a Scene from Two Projections,” Nature, vol. 293, pp. 133135, 1981.
[16] D. Nistér, “Automatic Dense Reconstruction from Uncalibrated Video Sequences,” PhD dissertation, Royal Inst. of Technology KTH, Sweden, 2001.
[17] C. Rother and S. Carlsson, “Linear Multi View Reconstruction and Camera Recovery Using a Reference Plane,” Int'l J. Computer Vision, vol. 49, nos. 2/3, pp. 117141, 2002.
[18] K. Sim and R. Hartley, “Recovering Camera Motion Using the $L_{\infty}\hbox{}{\rm Norm}$ ,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 12301237, 2006.
[19] K. Sim and R. Hartley, “Removing Outliers Using the $L_{\infty}\hbox{}{\rm Norm}$ ,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 485492, 2006.
[20] H. Stewénius, F. Schaffalitzky, and D. Nistér, “How Hard Is ThreeView Triangulation Really,” Proc. 10th Int'l Conf. Computer Vision, pp. 686693, 2005.
[21] J.F. Sturm, “Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones,” Optimization Methods and Software, vols. 1112, pp. 625653, 1999.
[22] P. Sturm and B. Triggs, “A Factorization Based Algorithm for MultiImage Projective Structure and Motion,” Proc. Fourth European Conf. Computer Vision, pp. 709720, 1996.
[23] C. Tomasi and T. Kanade, “Shape and Motion from Image Streams under Orthography: A Factorization Method,” Int'l J. Computer Vision, vol. 9, no. 2, pp. 137154, 1992.
[24] P.H.S. Torr and A.W. Fitzgibbon, “Invariant Fitting of Two View Geometry,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 648650, May 2004.
[25] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W. Fitzgibbon, “Bundle Adjustment—A Modern Synthesis,” Proc. ICCV Workshop Vision Algorithms, pp. 298372, 1999.
[26] M. Uyttendaele, A. Criminisi, S.B. Kang, S. Winder, R. Szeliski, and R. Hartley, “ImageBased Interactive Exploration of RealWorld Environments,” IEEE Computer Graphics and Applications, vol. 24, no. 3, pp. 5263, May/June 2004.
[27] L. Wolf and A. Shashua, “On Projection Matrices $P^{k} \mapsto P^{2}$ , $k = 3, \ldots, 6$ , and Their Applications in Computer Vision,” Proc. Eighth Int'l Conf. Computer Vision, vol. 1, pp. 412419, 2001.