
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Marc Niethammer, Patricio A. Vela, Allen Tannenbaum, "Geometric Observers for Dynamically Evolving Curves," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 10931108, June, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2008.28, author = {Marc Niethammer and Patricio A. Vela and Allen Tannenbaum}, title = {Geometric Observers for Dynamically Evolving Curves}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {6}, issn = {01628828}, year = {2008}, pages = {10931108}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.28}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Geometric Observers for Dynamically Evolving Curves IS  6 SN  01628828 SP1093 EP1108 EPD  10931108 A1  Marc Niethammer, A1  Patricio A. Vela, A1  Allen Tannenbaum, PY  2008 KW  computer vision KW  observers KW  active contours VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] Applied Optimal Estimation, A. Gelb, ed., 15th ed. MIT Press, 1999.
[2] D.G. Luenberger, “An Introduction to Observers,” IEEE Trans. Automatic Control, vol. 16, no. 6, pp. 596602, 1971.
[3] R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” J. Basic Eng., vol. 82, no. 1, pp. 3545, 1960.
[4] M. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci, T. Organ, and S. Adelaide, “A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking,” IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 174188, 2002.
[5] S.K. Mitter, “Filtering and Stochastic Control: A Historical Perspective,” IEEE Control Systems Magazine, vol. 16, no. 3, pp.6776, 1996.
[6] S.V. Lototsky, “Problems in Statistic of Stochastic Differential Equations,” PhD dissertation, Univ. of Southern California, 1996.
[7] R.N. Miller, E.F. Carter, and S.T. Blue, “Data Assimilation into Nonlinear Stochastic Models,” Tellus A, vol. 51, pp. 167194, 1999.
[8] A.V. Wouwer and M. Zeitz, “State Estimation in Distributed Parameter Systems,” Control Systems, Robotics and Automation, Theme in Encyclopedia of Life Support Systems, EOLSS, 2001.
[9] A. Yilmaz, X. Li, and M. Shah, Object Contour Tracking Using Level Sets. 2004.
[10] A. Blake and M. Isard, Active Contours. Springer, 1998.
[11] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Tracking Deforming Objects Using Particle Filtering for Geometric Active Contours,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 8, pp. 14701475, Aug. 2007.
[12] Y. Rathi, N. Vaswani, and A. Tannenbaum, “A Generic Framework for Tracking Using Particle Filter with Dynamic Shape Prior,” IEEE Trans. Image Processing, vol. 16, no. 5, pp. 13702007, 2007.
[13] N. Vaswani, A. Yezzi, Y. Rathi, and A. Tannenbaum, “TimeVarying Finite Dimensional Basis for Tracking Contour Deformations,” Proc. Conf. Decision and Control, pp. 16651672, 2006.
[14] S.K. Zhou, R. Chellappa, and B. Moghaddam, “Visual Tracking and Recognition Using AppearanceAdaptive Models in Particle Filters,” IEEE Trans. Image Processing, vol. 13, no. 11, pp. 14911506, 2004.
[15] F. Dornaika and F. Davoine, “On Appearance Based Face and Facial Action Tracking,” IEEE Trans. Circuits and Systems for Video Technology, vol. 16, no. 9, pp. 11071124, 2006.
[16] D. Cremers, “Dynamical Statistical Shape Priors for Level SetBased Tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 12621273, Aug. 2006.
[17] A.R. Mansouri, “Region Tracking via Level Set PDEs without Motion Computation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 947961, July 2002.
[18] N. Papadakis and E. Mémin, “Variational Optimal Control Technique for the Tracking of Deformable Objects,” Proc. Int'l Conf. Computer Vision, 2007.
[19] N. Peterfreund, “Robust Tracking of Position and Velocity with Kalman Snakes,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 6, pp. 564569, June 1999.
[20] J.D. Jackson, A.J. Yezzi, and S. Soatto, “Tracking Deformable Moving Objects under Severe Occlusions,” Proc. Conf. Decision and Control, 2004.
[21] P.W. Michor and D. Mumford, Riemannian Geometries on Spaces of Plane Curves, http://arxiv.org/abs/math0312384, 2008.
[22] A. Yezzi and A. Mennucci, “Conformal Metrics and True “Gradient Flows” for Curves,” Proc. Int'l Conf. Computer Vision, pp. 913919, 2005.
[23] L. Younes, “Computable Elastic Distances between Shapes,” SIAM J. Applied Math., vol. 58, no. 2, pp. 565586, 1998.
[24] L. Younes, “Optimal Matching between Shapes via Elastic Deformations,” Image and Vision Computing, vol. 56, pp. 381389, 1999.
[25] E. Klassen, A. Srivastava, W. Mio, and S.H. Joshi, “Analysis of Planar Shapes Using Geodesic Paths on Shape Spaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 3, pp.372383, Mar. 2004.
[26] I. Cohen, N. Ayache, and P. Sulger, “Tracking Points on Deformable Objects Using Curvature Information,” Technical Report 1595, INRIA, 1991.
[27] R. Basri, L. Costa, D. Geiger, and D. Jacobs, “Determining the Similarity of Deformable Shapes,” Vision Research, vol. 38, pp.23652385, 1998.
[28] G. Charpiat, O. Faugeras, and R. Keriven, “Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics,” Foundations of Computational Math., pp. OF1OF58, 2004.
[29] H.D. Tagare, D. O'Shea, and D. Groissier, “NonRigid Shape Comparison of Plane Curves in Images,” J. Math. Imaging and Vision, vol. 16, no. 1, pp. 5768, 2002.
[30] T.B. Sebastian, P.N. Klein, and B.B. Kimia, “On Aligning Curves,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 1, pp. 116124, Jan. 2003.
[31] M.I. Miller and L. Younes, “Group Actions, Homeomorphisms, and Matching: A General Framework,” Int'l J. Computer Vision, vol. 41, pp. 6184, 2001.
[32] M.F. Beg, M.I. Miller, A. Trouvé, and L. Younes, “Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms,” Int'l J. Computer Vision, vol. 61, no. 2, pp.139157, 2005.
[33] S. Angenent, S. Haker, and A. Tannenbaum, “Minimizing Flows for the MongeKantorovich Problem,” SIAM J. Math. Analysis, vol. 35, pp. 6197, 2003.
[34] R. Abraham, J.E. Marsden, and R. Ratiu, Manifolds, Tensor Analysis, and Applications, second ed. Springer, 1988.
[35] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Math. Sciences, vol. 153, Springer, 2003.
[36] J. Sethian, Level Sets Methods and Fast Marching Methods. Cambridge Univ. Press, 1999.
[37] M. Niethammer, A. Tannenbaum, and S. Angenent, “Dynamic Active Contours for Visual Tracking,” IEEE Trans. Automatic Control, vol. 51, no. 4, pp. 562579, 2006.
[38] A. Yezzi and S. Soatto, “Deformotion: Deforming Motion, Shape Average and the Joint Registration and Approximation of Structures in Images,” Int'l J. Computer Vision, vol. 53, no. 2, pp.153167, 2003.
[39] D. Cremers and S. Soatto, “A PseudoDistance for Shape Priors in Level Set Segmentation,” Proc. Int'l Workshop Variational, Geometric and Level Set Methods in Computer Vision, pp. 169176, 2003.
[40] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, “Conformal Curvature Flows: From Phase Transitions to Active Vision,” Archive for Rational Mechanics and Analysis, vol. 134, pp. 275301, 1996.
[41] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,” Int'l J. Computer Vision, vol. 13, pp. 522, 1997.
[42] T.F. Chan and L.A. Vese, “Active Contours without Edges,” IEEE Trans. Image Processing, vol. 10, no. 2, pp. 266277, 2001.
[43] B.K.P. Horn and B.G. Schunck, “Determining Optical Flow,” Atificial Intelligence, vol. 23, pp. 185203, 1981.
[44] E. Pichon, D. Nain, and M. Niethammer, A Laplace Equation Approach for the Validation of Image Segmentation, in preparation.
[45] A. Duci, A.J. Yezzi, S.K. Mitter, and S. Soatto, “Shape Representation via Harmonic Embedding,” Proc. Int'l Conf. Computer Vision, pp. 656662, 2003.
[46] A. Yezzi and J.L. Prince, “A PDE Approach for Measuring Tissue Thickness,” Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 8792, 2001.
[47] L. Evans, Partial Differential Equations. Am. Math. Soc., 1998.
[48] C.Y. Kao, S. Osher, and Y.H. Tsai, “Fast Sweeping Methods for Static HamiltonJacobi Equations,” Technical Report 0375, University of California, Los Angeles, 2003.
[49] M. Sussman, P. Smereka, and S. Osher, “A Level Set Approach for Computing Solutions to Incompressible TwoPhase Flow,” J.Computational Physics, vol. 114, pp. 146159, 1994.
[50] P.A. Vela, M. Niethammer, G.D. Pryor, A.R. Tannenbaum, R. Butts, and D. Washburn, “KnowledgeBased Segmentation for Tracking through Deep Turbulence,” to be published in, IEEE Trans. Control Systems Technology, 2007.
[51] M. Rousson and R. Deriche, “A Variational Framework for Active and Adaptive Segmentation of Vector Valued Images,” Proc. IEEE Workshop Motion and Video Computing, 2002.
[52] J. Li, M. Dao, C. Lim, and S. Suresh, “SpectrinLevel Modeling of the Cytoskeleton and Optical Tweezers Stretching of the Erythrocyte,” Biophysical J., vol. 88, no. 5, pp. 37073719, 2005.
[53] Y. Tseng, J.H. Lee, I. Jiang, T. Kole, and D. Wirtz, “MicroOrganization and ViscoElasticity of the Interphase Nucleus Revealed by Particle Nanotracking,” J. Cell Science, vol. 117, no. 10, pp. 21592167, 2004.
[54] G. Dong, N. Ray, and S. Acton, “Intravital Leukocyte Detection Using the Gradient Inverse Coefficient of Variation,” IEEE Trans. Medical Imaging, vol. 24, no. 7, pp. 910924, 2005.
[55] S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between SingleCell Biomechanics and Human Disease States: Gastrointestinal Cancer and Malaria,” Acta Biomaterialia, vol. 1, p. 1630, 2005.
[56] W. Enkelmann, “Investigations of Multigrid Algorithms for the Estimation of Optical Flow Fields in Image Sequences,” Computer Vision, Graphics, and Image Processing, vol. 43, no. 2, pp. 150177, 1988.
[57] Sequential Monte Carlo Methods in Practice, A. Doucet, ed. Springer, 2001.