
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Julien Lefèvre, Sylvain Baillet, "Optical Flow and Advection on 2Riemannian Manifolds: A Common Framework," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 10811092, June, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2008.51, author = {Julien Lefèvre and Sylvain Baillet}, title = {Optical Flow and Advection on 2Riemannian Manifolds: A Common Framework}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {6}, issn = {01628828}, year = {2008}, pages = {10811092}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.51}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Optical Flow and Advection on 2Riemannian Manifolds: A Common Framework IS  6 SN  01628828 SP1081 EP1092 EPD  10811092 A1  Julien Lefèvre, A1  Sylvain Baillet, PY  2008 KW  Partial Differential Equations KW  Finite element methods KW  Hyperbolic equations KW  Elliptic equations KW  Approximation of surfaces and contours KW  Global optimization KW  Data and knowledge visualization KW  Feature extraction or construction KW  Timevarying imagery KW  Biology and genetics VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] G. Allaire, Analyse Numérique et Optimisation, first ed. Editions de l'Ecole Polytechnique, 2005.
[2] G. Aubert, R. Deriche, and P. Kornprobst, “Computing Optical Flow via Variational Techniques,” SIAM J. Applied Math., vol. 60, no. 1, pp. 156182, 1999.
[3] P. Azerad and G. Pousin, “Inégalité de Poincaré Courbe Pour le Traitement Variationnel de l'équation de Transport,” Comptes rendus de l'Académie des Sciences, pp. 721727, 1996.
[4] S. Baillet, J.C. Mosher, and R.M. Leahy, “Electromagnetic Brain Mapping,” IEEE Signal Processing Magazine, Nov. 2001.
[5] J.L. Barron, D.J. Fleet, and S.S. Beauchemin, “Performance of Optical Flow Techniques,” Int'l J. Computer Vision, vol. 12, pp. 4377, 1994.
[6] J.L. Barron and A. Liptay, “Measuring 3D Plant Growth Using Optical Flow,” Bioimaging, vol. 5, pp. 8286, 1997.
[7] S.S. Beauchemin and J.L. Barron, “The Computation of Optical Flow,” ACM Computing Surveys, vol. 27, no. 3, pp. 433467, 1995.
[8] D. Bereziat, I. Herlin, and L. Younes, “A Generalized Optical Flow Constraint and Its Physical Interpretation,” Proc. Int'l Conf. Computer Vision and Pattern Recognition, vol. 2, p. 2487, 2000.
[9] M. Bertalmio, L.T. Cheng, S. Osher, and G. Sapiro, “Variational Problems and Partial Differential Equations on Implicit Surfaces,” J. Computational Physics, vol. 174, no. 2, pp. 759780, 2001.
[10] O. Besson and G. De Montmollin, “SpaceTime Integrated Least Squares: A TimeMarching Approach,” Int'l J. Numerical Methods in Fluids, vol. 44, no. 5, pp. 525543, 2004.
[11] D.L. Book, J.P. Boris, and K. Hain, “FluxCorrected Transport—II: Generalizations of the Method,” J. Computational Physics, vol. 18, pp. 248283, 1975.
[12] A. Bossavit, “Whitney Forms : A Class of Finite Elements for ThreeDimensional Computations in Electromagnetism,” IEE Proc., part A, vol. 135, no. 8, pp. 493500, Nov. 1988.
[13] N.E.H. Bowler, C.E. Pierce, and A. Seed, “Development of a Precipitation Nowcasting Algorithm Based upon Optical Flow Techniques,” J. Hydrology, vol. 288, pp. 7491, 2004.
[14] A. Cachia, J.F. Mangin, D. Riviere, F. Kherif, N. Boddaert, A. Andrade, D. PapadopoulosOrfanos, J.B. Poline, I. Bloch, M. Zilbovicius, P. Sonigo, F. Brunelle, and J. Regis, “A Primal Sketch of the Cortex Mean Curvature: A Morphogenesis Based Approach to Study the Variability of the Folding Patterns,” IEEE Trans. Medical Imaging, vol. 22, no. 6, pp. 754765, June 2003.
[15] U. Clarenz, M. Rumpf, and A. Telea, “Finite Elements on Point Based Surfaces,” Proc. Eurographics Symp. PointBased Graphics, pp.201211, 2004.
[16] T. Corpetti, D. Heitz, G. Arroyo, E. Mémin, and A. SantaCruz, “Fluid Experimental Flow Estimation Based on an OpticalFlow Scheme,” Experiments in Fluids, vol. 40, no. 1, pp. 8097, 2006.
[17] T. Corpetti, E. Mémin, and P. Pérez, “Dense Estimation of Fluid Flows,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 365380, Mar. 2002.
[18] U. Diewald, T. Preusser, and M. Rumpf, “Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces,” IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 2, pp.139149, 2000.
[19] M.P. Do Carmo, Riemannian Geometry. Birkhauser, 1993.
[20] O. Druet, E. Hebey, and F. Robert, BlowUp Theory for Elliptic PDEs in Riemannian Geometry, Princeton Univ. Press, chapter background material, pp. 112, 2004.
[21] A. Giachetti, M. Campani, and V. Torre, “The Use of Optical Flow for Road Navigation,” IEEE Trans. Robotics and Automation, vol. 14, pp. 3448, 1998.
[22] J.L. Guermond, “A Finite Element Technique for Solving First Order PDE's in L1,” SIAM J. Numerical Analysis, vol. 42, no. 2, pp.714737, 2004.
[23] B.K.P. Horn and B.G. Schunck, “Determining Optical Flow,” Artificial Intelligence, vol. 17, pp. 185204, 1981.
[24] A. Imiya, H. Sugaya, A. Torii, and Y. Mochizuki, “Variational Analysis of Spherical Images,” Proc. Computer Analysis of Images and Patterns, 2005.
[25] T. Inouye, K. Shinosaki, S. Toi, Y. Matsumoto, and N. Hosaka, “Potential Flow of AlphaActivity in the Human Electroencephalogram,” Neuroscience Letters, vol. 187, pp. 2932, 1995.
[26] V.K. Jirsa, K.J. Jantzen, A. Fuchs, and J.A.S. Kelso, “Spatiotemporal Forward Solution of the EEG and MEG Using Networkmodeling,” IEEE Trans. Medical Imaging, vol. 21, no. 5, pp. 493504, 2002.
[27] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge Univ. Press, 1987.
[28] J. Lefèvre, G. Obosinski, and S. Baillet, “Imaging Brain Activation Streams from Optical Flow Computation on 2Riemannian Manifold,” Proc. 20th Int'l Conf. Information Processing in Medical Imaging, 2007.
[29] C. Lenglet, R. Deriche, and O. Faugeras, Inferring White Matter Geometry from Diffusion Tensor MRI: Application to Connectivity Mapping. Pajdla and Matas, 2004.
[30] H. Liu, T. Hong, M. Herman, T. Camus, and R. Chellapa, “Accuracy versus Efficiency TradeOff in Optical Flow Algorithms,” Computer Vision and Image Understanding, vol. 72, pp. 271286, 1998.
[31] L. LopezPerez, R. Deriche, and N. Sochen, “The Beltrami Flow over Triangulated Manifolds,” Computer Vision and Math. Methods in Medical and Biomedical Image Analysis: ECCV 2004 Workshops CVAMIA and MMBIA, May 2004, revised selected papers.
[32] L.M. Lui, Y. Wang, and T.F. Chan, “Solving PDEs on Manifold Using Global Conformal Parameterization,” Proc. Third IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision, pp. 307319, 2005.
[33] F. Mémoli, G. Sapiro, and S. Osher, “Solving Variational Problems and Partial Differential Equations Mapping into General Target Manifolds,” J. Computational Physics, vol. 195, no. 1, pp. 263292, 2004.
[34] H.H. Nagel, “On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results,” Artificial Intelligence, vol. 33, pp. 299324, 1987.
[35] P.L. Nunez, “Toward a Quantitative Description of LargeScale Neocortical Dynamic Function and EEG,” Behavioral and Brain Sciences, vol. 23, no. 3, pp. 371398, 2000.
[36] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian Framework for Tensor Computing,” Int'l J. Computer Vision, vol. 66, no. 1, pp.4166, 2006.
[37] P. Perrochet and P. Azérad, “SpaceTime Integrated LeastSquares: Solving a Pure Advection Equation with a Pure Diffusion Operator,” J. Computational Physics, vol. 117, pp. 183193, 1995.
[38] J.A. Rossmanith, D.S. Bale, and R.J. LeVeque, “A Wave Propagation Algorithm for Hyperbolic Systems on Curved Manifolds,” J.Computational Physics, vol. 199, pp. 631662, 2004.
[39] C. Schnorr, “Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class,” Int'l J. Computer Vision, vol. 6, no. 1, pp. 2538, 1991.
[40] N. Sochen, R. Deriche, and L. Lopez Perez, “The Beltrami Flow over Implicit Manifolds,” Proc. Ninth IEEE Int'l Conf. Computer Vision, p. 832, 2003.
[41] A. Spira and R. Kimmel, “Geometric Curve Flows on Parametric Manifolds,” J. Computational Physics, vol. 223, no. 1, pp. 235249, 2007.
[42] Z. Sun, G. Bebis, and R. Miller, “OnRoad Vehicle Detection: A Review,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 694711, May 2006.
[43] A. Torii, A. Imiya, H. Sugaya, and Y. Mochizuki, “Optical Flow Computation for Compound Eyes: Variational Analysis of OmniDirectional Views,” Proc. First Int'l Symp. Brain, Vision, and Artificial Intelligence, 2005.
[44] D. Tschumperle and R. Deriche, “VectorValued Image Regularization with PDEs: A Common Framework for Different Applications,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 506517, May 2005.
[45] K. Wang, Weiwei, Y. Tong, M. Desbrun, and P. Schroder, “Edge Subdivision Schemes and the Construction of Smooth Vector Fields,” ACM Trans. Graphics, vol. 25, no. 3, pp. 10411048, 2006.
[46] J. Weickert and C. Schnorr, “A Theoretical Framework for Convex Regularizers in PDEBased Computation of Image Motion,” Int'l J. Computer Vision, vol. 45, no. 3, pp. 245264, Dec. 2001.
[47] D. Cosmelli, O. David, J.P. Lachaux, J. Martinerie, L. Garnero, B. Renault, and F. Varela, “Waves of Consciousness: Ongoing Cortical Patterns during Binocular Rivalry,” Neuroimage, vol. 23, no. 1, pp. 128140, 2004.